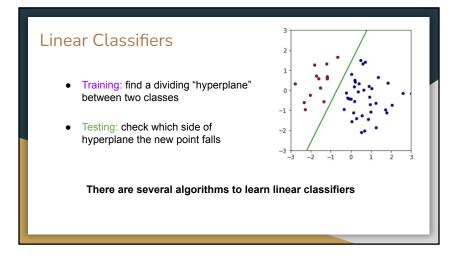
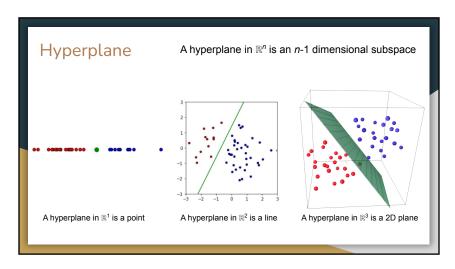


Basic Linear Classifiers

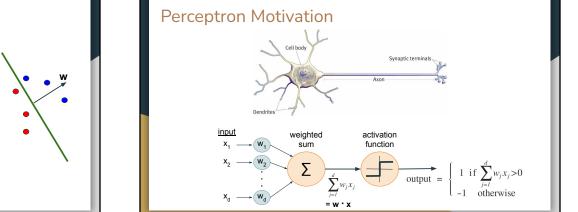
- Assumes 2 classes of labels (binary classification)
 - Will work to recognize if diabetes or not
 - Will not work to recognize 10 handwritten digits
 - Looking ahead: will see how to "spoof" multi-class classifiers from binary classifiers
- Assumes a linear decision boundary
 - Looking ahead: will see how to manipulate linear classifiers to get arbitrary decision boundaries





What is a hyperplane?

- Parameterized by a "weight" vector w orthogonal to the hyperplane, centered at origin
- What is the dimensionality of w in an n-dimensional space?
- What range is
 - The dot product of **w** with any of the blue points?
 - The dot product of **w** with any of the red points?



Perceptron Learning Algorithm

Two classes: one is +1 and the other is -1 Training data comes as vectors **x** and labels **y**

Start with vector $\mathbf{w} = \text{all zeros}$

- 1. For each training datapoint **x** with label **y**:
 - If $\mathbf{w} \cdot \mathbf{x} > 0$ and y = +1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} < 0$ and y = -1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} \le 0$ and y = +1, $\mathbf{w} = \mathbf{w} + \mathbf{x}$

• If $\mathbf{w} \cdot \mathbf{x} \ge 0$ and y = -1, $\mathbf{w} = \mathbf{w} - \mathbf{x}$

Each w update rotates the hyperplane

2. Repeat step 1 until no more misclassified datapoints, or until *num epochs* (where the number of epochs is a hyperparameter)

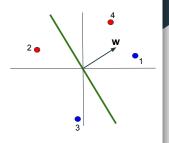
Perceptron Algorithm In Action

Two classes: one is +1 and the other is -1 Training data comes as vectors **x** and labels **y**

Start with vector $\mathbf{w} = \text{all zeros}$

- 1. For each training datapoint **x** with label y:
 - If $\mathbf{w} \cdot \mathbf{x} > 0$ and y = +1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} < 0$ and y = -1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} \le 0$ and y = +1, $\mathbf{w} = \mathbf{w} + \mathbf{x}$
 - If $\mathbf{w} \cdot \mathbf{x} \ge 0$ and y = -1, $\mathbf{w} = \mathbf{w} \mathbf{x}$

2. Repeat step 1 until no more misclassified datapoints, or until *num epochs* (where the number of epochs is a hyperparameter)

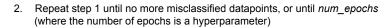


Perceptron Algorithm In Action

Two classes: one is +1 and the other is -1 Training data comes as vectors \mathbf{x} and labels \mathbf{y}

Start with vector $\mathbf{w} = \text{all zeros}$

- 1. For each training datapoint **x** with label **y**:
 - If $\mathbf{w} \cdot \mathbf{x} > 0$ and y = +1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} < 0$ and y = -1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} \le 0$ and y = +1, $\mathbf{w} = \mathbf{w} + \mathbf{x}$
 - If $\mathbf{w} \cdot \mathbf{x} \ge 0$ and y = -1, $\mathbf{w} = \mathbf{w} \mathbf{x}$

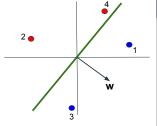


2 🕳

Two classes: one is +1 and the other is -1 Training data comes as vectors **x** and labels **y**

Start with vector $\mathbf{w} = \text{all zeros}$

- 1. For each training datapoint **x** with label **y**:
 - If $\mathbf{w} \cdot \mathbf{x} > 0$ and y = +1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} < 0$ and y = -1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} \le 0$ and y = +1, $\mathbf{w} = \mathbf{w} + \mathbf{x}$
 - If $\mathbf{w} \cdot \mathbf{x} \ge 0$ and y = -1, $\mathbf{w} = \mathbf{w} \mathbf{x}$

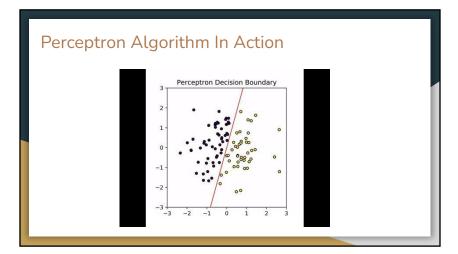


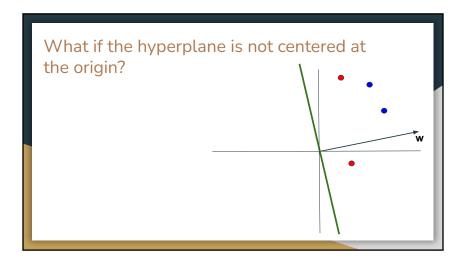
2. Repeat step 1 until no more misclassified datapoints, or until *num_epochs* (where the number of epochs is a hyperparameter)

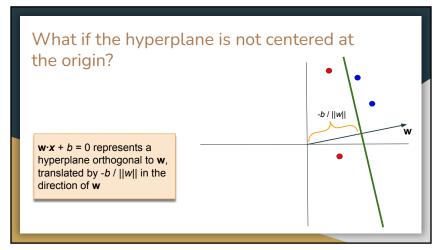
Perceptron Algorithm - Condensed Pseudocode

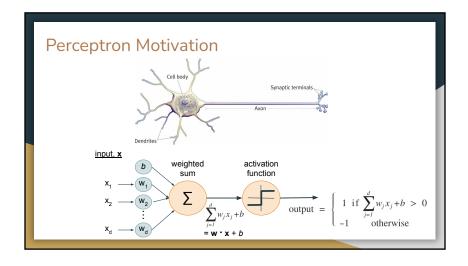
Start with vector $\mathbf{w} = \text{all zeros}$

- 1. For each training datapoint x with label y:
 - If $\mathbf{w} \cdot \mathbf{x} > 0$ and $y_i = +1$, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} < 0$ and $y_i = -1$, do nothing
 - If $y * (\mathbf{w} \cdot \mathbf{x}) > 0$, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} \le 0$ and y = +1, $\mathbf{w} = \mathbf{w} + \mathbf{x}$
 - If $\mathbf{w} \cdot \mathbf{x} \ge 0$ and y = -1, $\mathbf{w} = \mathbf{w} \mathbf{x}$
 - If $y^* (\mathbf{w} \cdot \mathbf{x}) \le 0$, $\mathbf{w} = \mathbf{w} + y \mathbf{x}$
- 2. Repeat step 1 until no more misclassified datapoints, or until *num_epochs* (where the number of epochs is a hyperparameter)









Perceptron Learning Algorithm Two classes: one is +1 and the other is -1 Training data comes as vectors **x** and labels **y**

Start with vector $\mathbf{w} = \text{all zeros}$

- 1. For each training datapoint **x** with label **y**:
 - If $\mathbf{w} \cdot \mathbf{x} > 0$ and y = +1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} < 0$ and y = -1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} \le 0$ and y = +1, $\mathbf{w} = \mathbf{w} + \mathbf{x}$
 - If $\mathbf{w} \cdot \mathbf{x} \ge 0$ and y = -1, $\mathbf{w} = \mathbf{w} \mathbf{x}$
- 2. Repeat step 1 until no more misclassified datapoints, or until *num_epochs* (where the number of epochs is a hyperparameter)

Each **w** update rotates the hyperplane

Perceptron Learning Algorithm with bias term

Two classes: one is +1 and the other is -1 Training data comes as vectors \mathbf{x} and labels \mathbf{y}

Start with vector $\mathbf{w} = \text{all zeros}$, and a bias term b = 0

- 1. For each training datapoint **x** with label **y**:
 - If $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} > 0$ and y = +1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} < 0$ and y = -1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} \le 0$ and y = +1, $\mathbf{w} = \mathbf{w} + \mathbf{x}$ and $\mathbf{b} = \mathbf{b} + 1$
 - If $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} \ge 0$ and y = -1, $\mathbf{w} = \mathbf{w} \mathbf{x}$ and $\mathbf{b} = \mathbf{b} 1$

2. Repeat step 1 until no more misclassified datapoints, or until *num_epochs* (where the number of epochs is a hyperparameter)

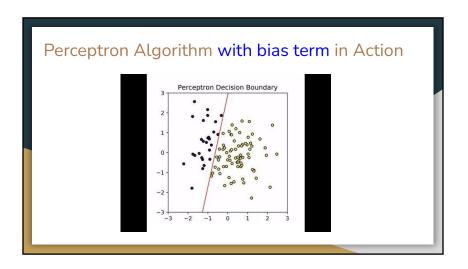
Each w update rotates the hyperplane

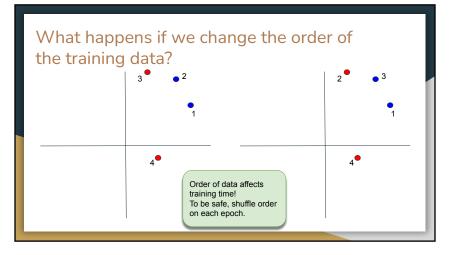
Each b update translates the hyperplane

Perceptron Algorithm with bias term Condensed

Start with vector $\mathbf{w} = \text{all zeros}$, and a bias term $\mathbf{b} = 0$

- 1. For each training datapoint **x** with label y:
 - If $\mathbf{w} \cdot \mathbf{x} + b > 0$ and y = +1, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} + b < 0$ and y = -1, do nothing
 - If $y * (\mathbf{w} \cdot \mathbf{x} + \mathbf{b}) > 0$, do nothing
 - If $\mathbf{w} \cdot \mathbf{x} + b \le 0$ and y = +1, $\mathbf{w} = \mathbf{w} + \mathbf{x}$ and b = b+1
 - If $\mathbf{w} \cdot \mathbf{x} + b \ge 0$ and y = -1, $\mathbf{w} = \mathbf{w} \mathbf{x}$ and b = b-1
 - If $y * (\mathbf{w} \cdot \mathbf{x} + \mathbf{b}) \le 0$, $\mathbf{w} = \mathbf{w} + y \mathbf{x}$ and $\mathbf{b} = \mathbf{b} + y$
- 2. Repeat step 1 until no more misclassified datapoints, or until *num_epochs* (where the number of epochs is a hyperparameter)



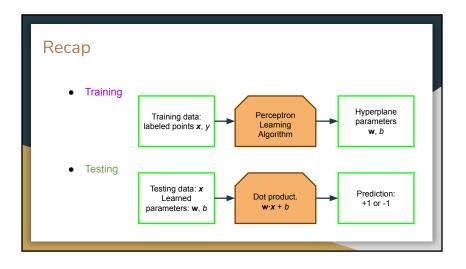


Perceptron Algorithm - no Linear Boundary Perceptron Decision Boundary

Testing

Once the perceptron has been trained and the parameters w and b (i.e., the hyperplane) have been learned, we predict the class of a new datapoint x by determining which side of the hyperplane it falls on, i.e., by computing the weighted sum (i.e., dot product) followed by the activation function:

predicted class =
$$\begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \\ -1 & \text{otherwise} \end{cases}$$



Complexity of Perceptron

- Training (as a function of n datapoints, d dimensions, and number of epochs)
- Testing

What does the trained hyperplane give us?

- Most importantly: a classifier to predict labels for new datapoints
- Also indicates which features are most important for each label

SPAM Email

- Given dataset of email messages, where each feature is a word and the value is the number of times a message contains that word
- Train perceptron to classify SPAM messages vs non-SPAM (HAM) messages
- Resulting w shows which dimensions (aka features aka words) are most indicative of SPAM and HAM

Sentiment analysis

- Given dataset of movie/product/restaurant reviews, where each feature is a word and the value is the number of times a review uses that word
- Train perceptron to classify sentiment (positive or negative)
- Resulting **w** shows which dimensions (aka features aka words) are most indicative of positive or negative sentiment

Danger of Simple Perceptron Last few points have too much influence May result in a hyperplane that's "bad" even if it separates the training data

Solution 1: Voted Perceptron

- Training: Cache every hyperplane seen during training history, i.e., store every w and b and the number of times it occurs
- Testing: Given a new point x, have every one of these cached hyperplanes vote with the number of times it occurs

Problem:

- (1) Need to store 1000s of hyperplanes after training
- (2) Testing time goes up drastically

Solution 2: Averaged Perceptron

Ide

During training, compute the *average* hyperplane. During testing, use this *average* hyperplane to classify a new point.

 Training: Rather than store every intermediate hyperplane seen during training (too expensive), instead keep track of a running sum of each hyperplane, i.e., a running sum of each w and b

u = u + w $\beta = \beta + b$

 At the end of training, compute the parameters of the average hyperplane: $\mathbf{u} = \mathbf{u} / (n^* epochs)$ $\mathbf{\beta} = \mathbf{\beta} / (n^* epochs)$

 Testing: Given a new point x, use the average hyperplane (based on u and β) to classify the point