

- Univariate linear regression
- Gradient descent
- Multivariate linear regression
- Polynomial regression
- Regularization

Classification vs. Regression

- Previously, we looked at *classification* problems where we used ML algorithms (e.g., kNN, decision trees, perceptrons) to predict *discrete*-valued (categorical with no numerical relationship) outputs
- Here, we look at *regression* problems where we use ML algorithms (e.g., linear regression) to predict *real*-valued outputs

- Given email, predict ham or spam
- Given medical info, predict diabetes or not
- Given tweets, predict positive or negative sentiment
 Given Titanic passenger info,
- predict survival or not
 Given images of handwritten numbers, predict intended digit
- Given student info, predict exam scores
- Given physical attributes, predict age
- Given medical info, predict blood pressure
- Given real estate ad, predict housing price
 Given review text, predict
- numerical rating

Classification vs. Regression

- Previously, we looked at *classification* problems where we used ML algorithms (e.g., *k*NN, decision trees, perceptrons) to predict *discrete*-valued (categorical with no numerical relationship) outputs
- Here, we look at *regression* problems where we use ML algorithms (e.g., linear regression) to predict *real*-valued outputs

Linear Regression (fitting a straight line)

- Univariate linear regression
- Gradient descent
- Multivariate linear regression
- Polynomial regression
- Regularization

Gradient Descent

We want to find the line that best fits the data, i.e., we want to find w_0 and w_1 that minimize the cost, $J(w_0, w_1)$

Gradient Descent Algorithm

- Start with some w₀ and w₁
 (e.g., w₀ = 0 and w₁ = 0)
- Keep changing w₀ and w₁ to reduce the cost J(w₀, w₁) until hopefully we end up at a minimum

Gradient Descent (Simplified Example: $w_0=0$)

We want to find the line (passing through the origin) that best fits the data, i.e., we want to find w_1 that minimize the cost, $J(w_1)$

Gradient Descent Algorithm

- Start with some w_1 (e.g., $w_1 = 0$)
- Keep changing w₁ to reduce the cost J(w₁) until hopefully we end up at a minimum

Contraction Contraction Cont

- Univariate linear regression
- Gradient descent
- Multivariate linear regression
- Polynomial regression
- Regularization

Univariate Linear Regression Real Valued Feature Housing Prices 1000 -Vectors Labels $h(x) = w_0 + w_1 x$ Х y 800 -1960 841,075.25 Price (\$1000s) 600 1250 590,999.99 960 210,500.86 400 600,000.00 2900 200 -0 -0 500 1000 1500 2000 2500 3000 Size (square feet)

Mult	ivariat	te Lin	ear Re	gression	
	Feature Vectors X			Real Valued Labels y	
<i>x</i> ₁	x ₂	x ₃	x ₄	1	
Size (feet ²)	Number bedrooms	Lot (feet ²)	Age (years)		$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots$
					$W_3 X_3 + W_4 X_4$
1960	3	19,000	12	841,075.25	
1250	3	10,700	65	590,999.99	
960	2	12,035	41	210,500.86	
2900	5	15,431	23	600,000.00	

10	ature	e Stall	ng			
		Feature Vectors X			Real Valued Lab y	pels
	<i>x</i> ₁	x ₂	x ₃	x ₄	1	
	Size (feet ²)	Number bedrooms	Lot (feet ²)	Age (years)		Features may have very different ranges!
						 Don't forget to perform
	1960	3	19,000	12	841,075.25	subtract each feature's
	1250	3	10,700	65	590,999.99	mean and divide by each feature's standard
	960	2	12,035	41	210,500.86	deviation.Then features will have
	2900	5	15,431	23	600,000.00	the same scale.

- Univariate linear regression
- Gradient descent
- Multivariate linear regression
- Polynomial regression
- Regularization

- Univariate linear regression
- Gradient descent
- Multivariate linear regression
- Polynomial regression
- Regularization

Addressing Overfitting

- x_1 = size of house
- x_2 = number of bedrooms
- $x_3 = \text{lot size}$
- x_4 = age of house
- $x_5 = parking spaces$
- x_6 = distance to schools
- x_7 = neighborhood crime rate

- To address overfitting:
- Reduce the number of features
- *Regularization*. Keep all the features but reduce the magnitude/values of parameters **w**.

Regularization

- Smaller values for the parameters w₁, w₂, w₃, ..., w_d lead to simpler hypotheses that are less prone to overfitting.
- We modify our cost function so that it not only
 - (1) finds a good fitting hypothesis (penalizes error of hypothesis on training data)

but also

(2) considers the complexity of the hypothesis (penalizing more complex hypotheses and favoring simpler hypotheses)

$$J(\mathbf{w}) = \frac{1}{2n} \left[\sum_{i=1}^{n} \left(h(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{d} w_j^2 \right] \qquad \begin{pmatrix} \lambda \text{ is regularization} \\ parameter \end{pmatrix}$$

