
Neural Networks

Supervised Classification so far

● Linear Classifiers
○ E.g., perceptron, logistic regression
○ Fail when data is not linearly separable

● Non-Linear Classifiers
○ E.g., kNN, decision trees or random forests
○ For large datasets: slow testing time (kNN), slow

training time (decision trees)

● Can we extend linear classifiers to non-linear?

● Prediction
○ Given all the weight parameters,

compute final output (predicted class label)

What is an artificial neural network?

w1,1

w1,2

w2,2

w2,3

w2,1

w3,1

x1

x2

x3

● Stacked layers of linear classifiers
○ Output of each layer is input of next

● Training
○ Given labeled data and

an architecture, learn
the weight parameters

Logistic Regression

...

x1

xd

w0

w1

wd

input, x

= w ∙ x

sigmoid or logistic
function

weighted
sum

∑w2x2

x0=1

a single unit or neuron

Biological Motivation

● Inspired by brains: each neuron
takes inputs from other neurons,
passes output to others

● Neurons “learn” from inputs over
time

Biological Motivation
● “One Learning Algorithm” hypothesis

○ Any neural network in our brain can learn any functionality

Biological Motivation

Computer Human Brain

Computation Units 109 gates 1011 neurons

Storage Units 109 bits RAM, 1012 bits disk 1011 neurons, 1014 synapses

Cycle Time 10-9 seconds 10-3 seconds

Bandwidth 109 bits/second 1014 bits/second

● Computer >> Brain for speed

● Brain >> Computer for parallelism

History of Neural Networks
● McCulloch and Pitts (1943): devise neural networks, invent the

perceptron learning algorithm (perceptron = single neuron)

● Widrow and Hoff (1962): simple learning algorithm for neural
networks with one hidden layer

● 1986: backpropagation to learn arbitrary network weights

● Late 1980s to late 2000s: research on NNs pauses
○ Slow to train
○ Requires lots of data to prevent overfitting

● Late 2000s: computing power ⬆, data ⬆,
training time ⬇, large networks show high prediction accuracies.
Rebranded as deep learning

Democratization of Deep Learning

Libraries freely available

● TensorFlow

● Torch

● Theano

● Caffe

● Keras

● CNTK

● Deeplearning4j

User supplies network
architecture and data.

Library performs training
with automatic gradient

computations.

Large networks may
require 100s of computers
with GPUs and take weeks

to train.

Network Architecture

w1,1

w1,2
w2,2

w2,3

w2,1

w3,1

x1

x2

x3 w1,3

Input Layer Hidden Layers Output Layer

Network Architecture

w1,2

w1,3
w2,2

w2,3

w2,1

x1

x2

x3

w1,4

w1,1

w1,5

x4

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

0
1
0

0
1
0

0
1
0

0
1
0

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1

0
1
0

0
1
0

What can neural networks compute?

● Single layer: hyperplane
(or collection of hyperplanes for multi-class)

What can neural networks compute?

● More than one layer: anything!
● Two-layer networks = universal function approximators

Logistic Regression

...

x1

xd

w0

w1

wd

input, x

= w ∙ x

sigmoid or logistic
function

weighted
sum

∑w2x2

x0=1

a single unit or neuron

● Examples of activation functions
○ Sigmoid
○ Tanh
○ Rectified Linear Unit

Forward Propagation

w1,1

w1,2

w2,2

w2,3

w2,1

w3,1

x1

x2

x3

● Stacked layers of linear classifiers
○ Output of each layer is input of next

a1,1

● Every output is the result of an
activation function applied to
the dot product of the weight
parameters and the inputs

a1,1 = g(w1,1⋅x)

● Examples of activation functions
○ Sigmoid
○ Tanh
○ Rectified Linear Unit

Forward Propagation

w1,1

w1,2

w2,2

w2,3

w2,1

w3,1

x1

x2

x3

● Stacked layers of linear classifiers
○ Output of each layer is input of next

a2,1 = g(w2,1⋅a1)

a2,1

● Every output is the result of an
activation function applied to
the dot product of the weight
parameters and the inputs

● Examples of activation functions
○ Sigmoid
○ Tanh
○ Rectified Linear Unit

Forward Propagation

w1,1

w1,2

w2,2

w2,3

w2,1

w3,1

x1

x2

x3

● Stacked layers of linear classifiers
○ Output of each layer is input of next

● Every output is the result of an
activation function applied to
the dot product of the weight
parameters and the inputs

a3,1 = g(w3,1⋅a2)

a3,1

● What is the dimensionality
of x? Of W1? Of x⋅W1?

Forward Propagation: Implementation

w1,1

w1,2

w2,2

w2,3

w2,1

w3,1

x1

x2

x3

● Let W1 be a matrix of all the weight parameters
from units in hidden layer 1

● Each column of W1
corresponds to the weight
parameters for one unit

● First layer output is g(x⋅W1) where
the activation function g is applied to each element in x⋅W1

● What is the dimensionality of g(x⋅W1)?
Of W2? Of g(x⋅W1)⋅W2?

Forward Propagation: Implementation

w1,1

w1,2

w2,2

w2,3

w2,1

w3,1

x1

x2

x3

● Let W2 be a matrix of all the
weight parameters from
units in hidden layer 2

● Each column of W2
corresponds to the weight
parameters for one unit

● Second layer output is g(g(x⋅W1)⋅W2)

● First layer output is g(x⋅W1)

● Second layer input is g(x⋅W1)

● What is the dimensionality
of g(g(x⋅W1)⋅W2)? Of W3? Of g(g(x⋅W1)⋅W2)⋅W3?

Forward Propagation: Implementation

w1,1

w1,2

w2,2

w2,3

w2,1

w3,1

x1

x2

x3

● Let W3 be a matrix of all the
weight parameters from
units in hidden layer 3

● Each column of W3
corresponds to the weight
parameters for one unit

● Final output is g(g(g(x⋅W1)⋅W2)⋅W3)

● Second layer output is g(g(x⋅W1)⋅W2)

● Final layer input is g(g(x⋅W1)⋅W2)

● What is the dimensionality of
the second hidden layer
output g(g(X⋅W1)⋅W2)?

Forward Propagation for a Batch of Data

w1,1

w1,2

w2,2

w2,3

w2,1

w3,1

x1

x2

x3

● What is the dimensionality of the final output g(g(g(X⋅W1)⋅W2)⋅W3)?

● Typically, we want to process several data points at once

● Let X be an n⨯d matrix of input data,
where each row is a data point
(n data points, d features)

● What is the dimensionality of
the first hidden layer output
g(X⋅W1)?

1

Bias Terms

w1,1

w1,2
w2,2

w2,3

w2,1

w3,1

x1

x2

x3 w1,3

x0

w1,0 w2,01 1

Activation Functions

● Sigmoid

PROS:

★ Units are analogous to
logistic regression

★ 0 to 1 range is biologically nice
(neuron either fires or not)

CONS:

➢ Outputs are always positive
➢ Gradient at lower and upper end is almost 0.

When gradients are 0, gradient-based training doesn’t progress.

Activation Functions

● Tanh

PROS:

★ Like sigmoid, but outputs
can also be negative

CONS:

➢ Gradient at lower and upper end is almost 0.
When gradients are 0, gradient-based training doesn’t progress.

Activation Functions

● Rectified Linear Unit

PROS:

★ Easier to compute than
sigmoid and tanh
(e.g., no exponentiation)

★ Gradient does not become 0
at large values

CONS:

➢ Outputs are always non-negative, like sigmoid
➢ Gradient is 0 at negative values

● Prediction
○ Given all the weight parameters,

compute final output (predicted class label)

Neural Network Learning

w1,1

w1,2

w2,2

w2,3

w2,1

w3,1

x1

x2

x3

● Stacked layers of classifiers
○ Output of each layer is input of next
○ NNs learn their own non-linear features!

● Training
○ Given labeled data and

an architecture, learn
the weight parameters

Cost Function

Linear Regression:

Logistic Regression:

Neural Networks:

Cost Function

Linear Regression:

Logistic Regression:

Neural Networks (multiclass):

Cost Function with Regularization

Linear Regression:

Logistic Regression:

Neural Networks (multiclass):

layers units
in layer

inputs

Training

● Initialize weights to different random values close to 0

● Iteratively update weights in order to reduce the cost

We want to find model parameters, i.e., weights for units in our network,
that minimize our cost function J(W) on the training data

Gradient Descent:

Gradient descent needs to know the gradients,
i.e., the partial derivatives of the cost function
with respect to the weight parameters.

We use backpropagation for this!

Backpropagation

x1

x2

x3

ᶖ1,1

ᶖ1,2

ᶖ2,3

ᶖ2,2

ᶖ2,1

ᶖ3,1

Compute “error” ᶖ for each unit in network.

a3,1ᶖ3,1 is error for a3,1

For example:

ᶖ2,3 is error for a2,3

ᶖ1,2 is error for a1,2 a2,3a1,2

Backpropagation

x1

x2

x3

ᶖ1,1

ᶖ1,2

ᶖ2,3

ᶖ2,2

ᶖ2,1

ᶖ3,1

Compute “error” ᶖ for each unit in network.

a3,1

ᶖ3,1 = y - a3,1

For a given training example,
first use forward propagation
to compute the output a of
each unit

w3,1
(3)

Then use backpropagation to
compute the error ᶖ of each unit

ᶖ2,3 = w3,1
(3)⋅ᶖ3,1 ᶖ1,2 = w2,1

(2)⋅ᶖ2,1 + w2,2
(2)⋅ᶖ2,2 + w2,3

(2)⋅ᶖ2,3

w2,3
(2)

w2,1
(2)

w2,2
(2)

Training

● Initialize weights to different random values close to 0

● Iteratively update weights in order to reduce the cost

We want to find model parameters, i.e., weights for units in our network,
that minimize our cost function J(W) on the training data

Gradient Descent:

➔ Use forward propagation to compute the output a of each unit

➔ Use backpropagation to compute the errors ᶖ of each unit

➔ The gradients, i.e., the partial derivatives of the cost function
with respect to the weight parameters, are determined from a
and ᶖ as aL⋅ᶖL+1

Recurrent
Neural Network

x1

x2

x3

● RNNs are a type of neural
network designed to recognize
patterns in sequences of data

● RNNs take as input both the current data point as well as
output of the RNN’s previous computation

● RNNs have “memory”, i.e., they share weight parameters over time

● For example, if you want to predict the next word in a sentence,
it is useful to know which word came before it

● CNNs (or ConvNets) are used primarily for image analysis

● In a traditional NN, each input (pixel) is connected to each unit in the
first hidden layer, which makes for a lot of parameters to learn

● Traditional NNs do not take spatial structure of data into account

● With CNNs, each unit is connected only to a small local region of the input

● Convolutional layer consists of learnable filters (kernels); each filter is
convolved across the input data.

Convolutional Neural Network Convolutional Neural Network

