How might my ratings change my recommendations?

Goals of Recommender Systems

- Show content that we’re interested in
- Suggest new content that would interest us
- Suggest new content that is generally popular
- Adjust recommendations based on our feedback

$1M winning algorithm not actually used by Netflix

Researchers were able to de-anonymize data by comparing with IMDB ratings, resulting in a lawsuit.
Recommender Systems

- What makes two (Amazon) users similar?
 - Purchased the same set of items
 - Liked and disliked the same set of items
- What makes two items similar?
 - The same set of users purchased/liked them
 - Their titles, description, prices, other metadata

Collaborative Filtering

Create a user-item matrix

<table>
<thead>
<tr>
<th>User</th>
<th>Rating1</th>
<th>Rating2</th>
<th>Rating3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sohie</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Brian</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Cibele</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Ellen</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Ada</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Similarity: Jaccard

- Measure similarity between a pair of user vectors (or a pair of item vectors)

\[U_A = [1, 0, 1, 0] \]
\[U_B = [0, 0, 1, 0] \]

\[\text{Jaccard}(U_A', U_B') = \frac{|U_A \cap U_B|}{|U_A \cup U_B|} \]

Problem: does not work for non-binary vectors

When is result 0? When is it 1?

Similarity: Cosine

- Measure similarity between a pair of user vectors (or a pair of item vectors)

\[U_A = [0, 5, 2, 0] \]
\[U_B = [1, 0, 4, 2] \]

\[\text{CosineSim}(U_A', U_B') = \frac{U_A \cdot U_B}{||U_A|| \cdot ||U_B||} \]

When is result 0? When is it 1?

User-Based Collaborative Filtering

Task: predict rating on new user-item entry in matrix: \(U_{A'}, I_P \)

- Among users that have rated \(I_P \), select a set \(S_K \) of the \(K \) most similar users to \(U_A \)

- Predicted rating for \(U_{A'}, I_P \) is average rating of \(I_P \) from users in \(S_K \):

\[R(U_{A'}, I_P) = \frac{1}{K} \sum_{U_i \in S_k} R(U_i, I_P) \]

User-Based Collaborative Filtering

Task: predict rating on new user-item entry in matrix: \(U_{A'}, I_P \)

- Some users have a tendency to be more or less generous

- Use deviation from a user’s average rating, rather than a user’s absolute rating

\[R(U_{A'}, I_P) = \frac{1}{K} \sum_{U_i \in S_k} (R(U_i, I_P) - \text{mean}(U_B)) \]
Item-Based Collaborative Filtering

Task: predict rating on new user-item entry in matrix: U_A, I_P

- Among *items* that have been rated by U_A, select a set S_K of the K most similar *items* to I_P.
- Predicted rating for U_A, I_P is average rating of U_A from *items* in S_K:

$$R(U_A, I_P) = \frac{\sum_{I_q \in S_K} R(U_A, I_q)}{K}$$

Weighted Average

Compute final score in some class:

<table>
<thead>
<tr>
<th>Score</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class participation</td>
<td>60%</td>
</tr>
<tr>
<td>Homework</td>
<td>95%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>50%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>87%</td>
</tr>
</tbody>
</table>

Weighted Mean

$$\text{Weighted Mean} = \frac{\sum \text{Weight} \times \text{Score}}{\sum \text{Weight}} = \frac{50 \times 0.60 + 200 \times 0.95 + 100 \times 0.50 + 150 \times 0.87}{50 + 200 + 100 + 150}$$

Mean is 73%

Weighted Mean is 80%

Problems with Collaborative Filtering?

- If user-item matrix is too sparse, may not be useful
- “Cold-start problem”: how to handle new users and items?
- Won’t encourage diverse results (echo chamber effect)
Content-Based Recommendations: Approach 1

● Define similarity between users (or similarity between items) in terms of content features, not rating patterns
 ➢ Examples of item features: restaurant cuisine type, director or actors in movie, product details
 ➢ Examples of user features: demographic information

● Apply same methods as for collaborative filtering

Content-Based Recommendations: Approach 2

● Featurize users and items under the same set of features
 ➢ Features: words
 ○ user feature values = word counts in reviews
 ○ item feature values = word counts in descriptions
 ➢ Features: demographics
 ○ user feature values = demographic info
 ○ item feature values = target demographics

● Compute similarity between a given user and item

Featurizing Text

● Bag of words: tokenizing, counting, tf-idf weighting

<table>
<thead>
<tr>
<th>Fast service but bland food.</th>
<th>bland</th>
<th>but</th>
<th>fast</th>
<th>food</th>
<th>good</th>
<th>no parking</th>
<th>service</th>
<th>but bland</th>
<th>parking</th>
<th>good fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good fast food.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>No service, no parking, no good.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fast service but bland food.</th>
<th>bland</th>
<th>but</th>
<th>fast</th>
<th>food</th>
<th>good</th>
<th>no parking</th>
<th>service</th>
<th>but bland</th>
<th>parking</th>
<th>good fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good fast food.</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>No service, no parking, no good.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.9</td>
<td>0.3</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

● N-Grams

Evaluation

● **Task Type A**: Given test set of (user, item) pairs, predict ratings
 ➢ Raw accuracy, e.g., percentage of ratings predicted exactly
 ➢ Root mean squared error (RMSE)
 \[\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2} \]

● **Task Type B**: Given test set of users, predict set of items to recommend
 ➢ Precision, Recall, F1 Score

<table>
<thead>
<tr>
<th>TP: Recommended items user actually buys</th>
<th>FP: Recommended items user does not buy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN: Items not recommended and user does not buy</td>
<td>FN: Items not recommended and user buys</td>
</tr>
</tbody>
</table>
Vectorization (Array Programming)

- Many scientific and numerical computing libraries, such as NumPy in Python, provide vectorized operations, i.e., operations that can be applied to an entire array (matrix):
 - `np.random.randint(...)`
 - `np.median(a)`
 - `np.dot(a,b)`
 - `np.mean(a)`
 - `np.ones(...)`
 - `a>10`
 - `a**2`
 - `np.sum(a)`

- Whenever possible, it is usually a good idea to use vectorization rather than looping through an array and applying an operation to each element.

Overview

ML Algorithms

- Supervised Learning
- Unsupervised Learning
- Hierarchical Clustering
- Dimensionality Reduction

- Non-Parametric
- Parametric
- Non-Linear Classifiers
- Linear Classifiers
- Linear Regression
- Logistic Regression
- Neural Networks
- Support Vector Machines
- Decision Trees
- kNN
- Collaborative Filtering
- Gaussian Mixture Models
- Hidden Markov Models