

Crea	Discover Weekly ted by Spotty - 30 songs. 2 hr	PLAVLIST DISCOVER Weekly Vou received mitage of fresh music. Enjoy new discoverifies and deep cats chosen just for you biorday so save your binourities FLAV FOLLOWING To hr 5 min						
TR							USER	
+ Ba	thed in Light	Gengahr		Powder / Bathed in Li			Spotify	
+ 16	ove You All (Radio Mix) [feat.	The Soronprfbs, Mi		I Love You All (From			Spotify	
+ Fir	st Light	Django Django		First Light			Spotify	
+ ×1	Marks The Spot	Ghostpoet, Nadine		Shedding Skin			Spotify	
+ All	The Time	Bahamas		Bahamas is Afie			Spotify	
+ 00	ccupy Your Mind	Villagers		Occupy Your Mind			Spotify	
+ Sh	elter Song	Temples		Sun Structures			Spotify	

Goals of Recommender Systems

- Show content that we're interested in
- Suggest new content that would interest us
- Suggest new content that is generally popular
- Adjust recommendations based on our feedback

Similarity: Cosine

• Measure similarity between a pair of user vectors (or a pair of item vectors)

<u>User</u>-Based Collaborative Filtering

<u>Task</u>: predict rating on new user-item entry in matrix: U_{Δ} , I_{P}

- Among users that have rated I_P, select a set S_K of the K most similar users to U_A
- Predicted rating for U_A, I_P is average rating of I_P from users in S_k:

$$R(U_A, I_P) = \frac{\sum_{U_B \in S_K} R(U_B, I_P)}{K}$$

Item-Based Collaborative Filtering

<u>**Task**</u>: predict rating on new user-item entry in matrix: U_A , I_P

- Among *items* that have been rated by U_A, select a set S_K of the K most similar *items* to I_P
- Predicted rating for U_A, I_P is average rating of U_A from *items* in S_κ:

$$R(U_A, I_P) = \frac{\sum_{I_Q \in S_K} R(U_A, I_Q)}{K}$$

Item-Based Collaborative Filtering

<u>Task</u>: predict rating on new user-item entry in matrix: U_A , I_P

 Among <u>all</u> *items* that have been rated by U_A, compute weighted average of U_A's ratings (weighted by similarity to I_P)

$$R(U_A, I_P) = \frac{\sum_{I_Q \in S_{all}} Sim(I_P, I_Q)R(U_A, I_Q)}{\sum_{I_Q \in S_{all}} Sim(I_P, I_Q)}$$

Weighted Average	Mean is 73%				
Compute final score	Weighted Mean is 80%				
in some class:	<u>Score</u>	Weight			
Class participation	60%	50 points			
Homework	95%	200 points			
Midterm Exam	50%	100 points			
Final Exam	87%	150 points			
$\frac{\text{Weighted}}{\text{Mean}} = \frac{\sum \text{Weight} \cdot \text{Score}}{\sum \text{Weight}} = \frac{50}{2}$	*0.60 + 200*0.95 50 + 200	$+ 100*0.50 + 150*0.87 \\+ 100 + 150$			

Content-Based Recommendations: Approach 1

- Define similarity between users (or similarity between items) in terms of content features, not rating patterns
 - Examples of item features: restaurant cuisine type, director or actors in movie, product details
 - > Examples of user features: demographic information
- Apply same methods as for collaborative filtering

Content-Based Recommendations: Approach 2

- Featurize users and items under the same set of features
 - Features: words
 - user feature values = word counts in reviews
 - \circ $\;$ item feature values = word counts in descriptions $\;$
 - Features: demographics
 - user feature values = demographic info
 - item feature values = target demographics
- Compute similarity between a given user and item

Featurizing Text

 Bag of words: tokenizing, counting, tf-idf weighting 								
	bland	but	fast	food	good no		parking service	
Fast service but bland food.	1	1	1	1	0	0	0	1
Good fast food.	0	0	1	1	1	0	0	0
No service, no parking, no good.	0	0	0	0	1	3	1	1
	bland	bland but fast f		food	good	no	 parking service 	
	0.5	0.5	0.4	0.4	0	0	0	0.4
	0	0	0.6	0.6	0.6	0	0	0
	0	0	0	0	0.2	0.9	0.3	0.2
N-Grams		s	ervice r	10 fa	ast food		aood	fast
Fast service but bland food. Good fast food.	fast service but bland parking no service but bland food							
No service, no parking, no good.			n	o servic	e no	good	n	o parking

Evaluation

- **Task Type A:** Given test set of (user, item) pairs, predict ratings
 - > Raw accuracy, e.g., percentage of ratings predicted exactly Too strict!
 - Root mean squared error (RMSE)

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$

- **Task Type B:** Given test set of users, predict set of items to recommend
 - Precision, Recall, F1 Score

TP: Recommended items user actually buys FP: Recommended items user does not buy TN: Items not recommended and user does not buy FN: Items not recommended and user buys

Vectorization (Array Programming)

 Many scientific and numerical computing libraries, such as NumPy in Python, provide vectorized operations, i.e., operations that can be applied to an entire array (matrix)

np.median(a) a[a>10] np.random.randint(...) np.dot(a,b) a**2 np.sum(a) np.mean(a) np.ones(...)

 Whenever possible, it is usually a good idea to use vectorization rather than looping through an array and applying an operation to each element

