\( \newcommand{\vecIII}[3]{\left[\begin{array}{c} #1\\#2\\#3 \end{array}\right]} \newcommand{\vecIV}[4]{\left[\begin{array}{c} #1\\#2\\#3\\#4 \end{array}\right]} \newcommand{\Choose}[2]{ { { #1 }\choose{ #2 } } } \newcommand{\vecII}[2]{\left[\begin{array}{c} #1\\#2 \end{array}\right]} \newcommand{\vecIII}[3]{\left[\begin{array}{c} #1\\#2\\#3 \end{array}\right]} \newcommand{\vecIV}[4]{\left[\begin{array}{c} #1\\#2\\#3\\#4 \end{array}\right]} \newcommand{\matIIxII}[4]{\left[ \begin{array}{cc} #1 & #2 \\ #3 & #4 \end{array}\right]} \newcommand{\matIIIxIII}[9]{\left[ \begin{array}{ccc} #1 & #2 & #3 \\ #4 & #5 & #6 \\ #7 & #8 & #9 \end{array}\right]} \)

Quiz

  1. When would we apply these dot products and vectors?

    Great question! The answer is rarely. I have needed to do it when building custom geometry, so that I have surface normals for faces.

    For example, we could have computed face normals for our Obelisk, and given those normals, we could use Phong lighting and really make it look nice.

    If you are using built-in geometry, you will probably not need to do these calculations yourself.

    But you should know they exist and their meaning and purpose. This course is not just about building CG applications, but also understanding the fundamentals of how they work.