
Lecture on Texture Mapping

Texture mapping is one of the major innovations in CG in the 1990s. It allows us to add a lot of surface detail
without adding a lot of geometric primitives (lines, vertices, faces). Think of how interesting Caroline’s “loadedDemo”
is with all the texture-mapping. Figure 1 contrasts the two.

1 Reading

As with everything in computer graphics, most of what I know about texture mapping I learned from Angel’s book,
so check that chapter first. Unfortunately, it’s one of his weakest chapters, because it doesn’t do a very good job of
connecting the theory with the OpenGL code. A more practicalpresentation is a chapter of the Red Book (the Red
OpenGL Programming Guide). You’re encouraged to look at both.

2 Conceptual View

Texture mapping paints a picture onto a polygon. Although the name istexture-mapping, the general approach simply
takes an array of pixels and paints them onto the surface. An array of pixels is just a picture. It might be something
your program computes and uses. More likely, it will be something that you load from a file.

Demos: These all live in thẽcs307/public_html/pytw/demos/texture-mapping/ directory.

• SimplestTextures.py : This uses two extremely simple textures, one black and white, and one RGB,
textured onto either a quad or the teapot.

• USFlag.py : This actually shows three flags: a checkered flag, a flag of increasing luminance values and a US
flag. You can switch among the flags using the “u” key. You can change the size of the grayscale flags using the
“.” and “,” keys. This is about the simplest texture-mappingcode. Please look at it.

• QuadPPM.py: TW makes it easy to read a texture from a PPM file and texture-map it onto something. The
code for this demo is relatively simple and is worth reading.This demo uses a PPM file of the US flag texture
as the default, but you can specify your own on the command line. There’s a directory of image files in

Figure 1: Caroline Geiersbach’s loadedDemo with and without textures

1

˜cs307/public_html/pytw/textures

Conceptually, to use textures, you must do the following:

• define a texture (a rectangular array of pixels —texels)

• specify a pair of texture coordinates(s, t) for each vertex of your polygon

The graphics system “paints” the texture onto the polygon.

3 How It Works

Texture mapping is araster operation, unlike any of the other things we’ve looked at. Nevertheless, we apply textures
to 2D surfaces in our 3D model, and the graphics system has to figure out how to modify thepixels duringrasterizing
(AKA scan conversion).

Since texture-mapping happens as part of the rasterizing process, let’s start there.

3.1 Rasterizing

When the graphics card renders a polygon, it (conceptually)

• determines the pixel coordinates of each corner.

• determines the edge pixels of the polygon, using a line-drawing program (an imporant one is Bresenham’s
algorithm, which we won’t have time to study).

• determines the color of the edge pixels on a single row (by linear interpolation from the vertex colors)

• walks down the row coloring each pixel (by linear interpolation from the two edge pixels).

Note: standard terminology is that the polygon is called afragment (since it might be a fragment of a Bézier surface
or some such). Thus, the graphics card applies a texture to a fragment.

This all happens in either in theframebuffer or an array just like it.

3.2 Texture Mapping

To do texture mapping, the graphics card must

• compute a texture coordinate for each pixel during the rasterizing process, using bi-linear interpolation

• look up the texture coordinates in the array of texels (either using the nearest or a linear interpolation of the four
nearest)

• Either

– Use the color of the texture as the color of the pixel, or

– Combine the color of the texture with the color of the pixel

3.3 Other Innovations

The idea is tomap a buffer of information onto a region of the framebuffer, thereby affecting the pixels.

• texture mapping: combine colors from the texture map with colors from the scene.

• bump mapping: perturb the surface normals from the scene when computing the light reflection

• environment (reflection) mapping: combine the colors from the material with a reflection of the scene; gives a
result like ray tracing, but much faster.

2

(0,0) (1,0)

(0,1) (1,1)

Figure 2: Texture Coordinates

3.4 Texture Space

We can have 1D or 2D textures. As with Bézier curves, the texture parameters will be in the range [0,1] in each
dimension. Note that if your texture array isn’t square and your polygon isn’t square, you may have to deal with
changes inaspect ratio.

Your texture isalways an array and therefore is always a rectangle. Mapping a texture to rectangles (as OpenGL
objects) is fairly easy; mapping it to other shapes is likelyto cause distortion. We’ll need to be careful in those cases.

Associate each vertex of our polygon with a texture parameter, just like we associate it with a normal, a color, and
so forth. That means, as usual, that we mustprecede the vertex with the texture parameter.

For example, here is how we texture-map the entire texture onto a quad:

glBegin(GL_QUADS);
glTexCoord2f(0,1); glVertex3f(-1,-1,0);
glTexCoord2f(1,1); glVertex3f(1,-1,0);
glTexCoord2f(1,0); glVertex3f(1, 1,0);
glTexCoord2f(0,0); glVertex3f(-1, 1,0);
glEnd();

Notice that each vertex ispreceded by its texture coordinates. That’s because, like many otherthings in OpenGL,
the attributes of a vertex precede it down the pipeline. (Remember, we did this with RGB colors as well.)

How do the texture coordinates relate to the 2D array of texels? This is easiest to explain with a picture such as
figure 2.

• As you’d expect, the first element of the texel array, that is,element[0][0] is the same as texture coordinates
(0,0).

• As we go down the first row of the array, until we get to element[0][RowLength] , we get to texture
coordinates (1,0). This may seem odd, but it’s true.

• As we go down the first column of the array, until we get to element [ColLength][0] , we get to texture
coordinates (0,1). Again, this may seem odd, but it’s true.

• Unsurprisingly, the last element of the texel array is the corner opposite the first element, so array element
[ColLength][RowLength] corresponds to texture coordinates (1,1).

Conventionally, the texture coordinates are called(s, t), just as spatial coordinates are called(x, y, z). Thus, we
can say thats goes along therows of the texture (along the “fly” of the flag). Thet coordinate goes along thecolumns
of the texture (along the “hoist” of the flag).

Although you will often use the entire texture, so that all your texture coordinatesare 0 or 1, that is notnecessary.
In fact, because the dimensions of texture arrays are required to be powers of two, the actual image that you want is
often only a portion of the whole array.

3

The computed US flag array has that property. The array is 256 pixels wide by 128 pixels high, but the flag itself
is 198 pixels wide by 104 pixels high. Thus, the maximum texture coordinates are:

fly = 198/256 = 0.7734

hoist = 104/128 = 0.8125

Of course, we also need to ensure that the rectangle we are putting the flag on has the same aspect ratio as the US
flag, namely: 1.9. Seehttp://cs.wellesley.edu/ ˜ cs307/flagspec.htm .

The texture parameters can also begreater than 1, in which case, if we useGL_REPEAT, we can getrepetitions
of the texture. Ifs is some parameter where0 < s < 1, specifying some part of the texture partway along, then1 + s,
2 + s and so on are the same location in the texture.

3.5 Basic Demos

Please look at the code for the following demos. All of them are in ˜ cs307/public_html/demos/
texture-mapping/ .

• SimplestTextures.py This is a simple example, using very small (4× 4) textures. There are actually two
textures: use “u” to switch.

3.6 Texture Mapping in OpenGL

Conceptually, to actually do texture mapping in OpenGL, youhave to do all the following steps.

1. Create or load a 1D or 2D array of texels. All dimensions must be a power of two! Different kinds of data are
possible:

• RGB values

• RGBA values

• Luminance (grayscale)

• ...

Also, the data in the array can be in different formats (unsigned bytes, short floats, etc.). You must tell OpenGL
what it is.

2. Set various modes. These have default values (see the man pages), so they can be skipped in some cases, but
I tend to set them all. I copy/paste the code from some workingexample of texture-mapping, then change the
modes as necessary.

3. Send the texel data to the graphics card.

4. Enable texture-mapping

5. Specify a texture coordinate for each vertex. Sometimes this is done automatically (as for the teapot) or is
calculated (as for Bézier surfaces). We’ll get into Bézier stuff later.

For coding, that means the following steps. We’ll go throughthese functions in detail.

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER , GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER , GL_LINEAR);

glTexImage2D(GL_TEXTURE_2D, 0, 3, width, height, 0,
GL_RGB, GL_UNSIGNED_BYTE, texelArray);

4

Figure 3: Demo of how textures can interact with fragment color: TextureParameters

5

glEnable(GL_TEXTURE_2D);

glBegin(...);
glTexCoord2f(0,1);
glVertex3f(0,0,0);

The glTexEnvf has several settings. The settings can mean different things depending on the format of the
texture (such as luminance versus RGB) and the color model inOpenGL. Ignoring those nuances, here’s a basic
summary.

• GL_DECALandGL_REPLACE. These do the same thing except when there’s transparency. The intrinsic color
of the fragment (the polygon in the model) is ignored and the color of the texel is used instead.

• GL_MODULATE. The color of the pixel is theproduct (plain old multiplication) of the color of the fragment and
the color of the texel. The texel is often a luminance value and you use the texture to darken or lighten the color
of the fragment.

• GL_BLEND. The color of the pixel is a mixture (weighted average) of thecolor of the fragment and the texture
“environment” color, with the texel determining the weighting.

The texture can eitherreplace the scene colors, like a decal, or it can blend with the scene colors, as with wood-
grain finishes, or even adding surface smudges and dirt, to make things look more realistic. The parameters settings in
glTexEnvf help to set this interaction between the color of the fragment (whether direct RGB color or material and
lighting) and the texture.

We’ll look at theTextureParameters.py demo and code (I’ll port that to Python from C before class). You
can see a screen-shot in figure 3. We’ll also look at˜ cs307/pub/tw/Tutors/texture .

We’ll talk about theglTexParameteri function calls later.
TheglTexImage2D function has a lot of parameters. Most are fixed, though:

1. GL_TEXTURE_2Dor GL_TEXTURE_1D. Those are the values we’ll use

2. level. It’s possible to give OpenGL several images at different resolutions, called “mipmaps,” but it seems to be
flakey. The OpenGL examples I’ve downloaded don’t work. So, always use the base level, which is 0.

3. internal format: specifies the number of color componentsin the texture. Typically, this is 3, meaning RGB
data.

4. width of the texture. Must be a power of 2 or one more than a power of 2 if you have a one-pixel border.

5. height. Same as width

6. border. zero or one.

7. format. The kind of pixel data. TypicallyGL_RGBor GL_LUMINANCE.

8. type. The datatype of the array. TypicallyGL_UNSIGNED_BYTE.

9. pixels. A pointer to the image data in memory.

We’ll look at theUSflag.cc file for an example of this.

4 Issues

Here are some issues to face and choices to make:

• Aspect Ratio: Your texture is always a rectangle. Even if your polygon is one, too, you’ll have to deal with
matching aspect ratios if you want the image to be undistorted. With a plain texture (such as grass or wood) this
may not matter, but for pictures it may.

6

Figure 4: Both figures are checkerboard textures, stretchedover a large number of pixels. Consequently, the texture
coordinate values for many pixels fall “between” texel values. In the picture on the left, we use a “linear” interpolation
between the texel values. In the picture on the right, we use the “nearest” texel value.

• Wrapping: What happens when your texture parameters fall outside the [0,1] range? We’ll try this with the
tutor.

– You can “wrap” around (essentially removing the integer part and using only the fractional part). This
repeats the texture. For real textures, you often want to do this.

– You can “clamp” the value at the edge pixel. If your texture has a border of some sort, that can work out
well.

• Filter: What to do when the pixel doesn’t exactly match a texel? You get to specify this for both magnification
(pixel smaller than texel) and minification (pixel larger than texel), but in practice, I think they are usually set to
the same value.

– Use the nearest (Manhattan distance) texel to the center of the pixel.

– Use a weighted average of the four texels nearest to the center of the pixel.

We’ll look at theLinearNearest demo to understand this.

Note: the functions to set the filters appear not to have adequate defaults: if you don’t set them, you won’t get a
texture!

• densityof the texture repetition. Too little and it looks badly “stretched.” Too much can squeeze the texture too
much. Look atGrass.cc . Try the three different textures. Use the “r” callback to reveal the vertices that are
created. Look at the texture “from above,” by using the “Y” callback.

4.1 More Demos

Please look at the code for the following demos. All of them are in ˜ cs307/public_html/pytw/demos/
texture-mapping/ .

7

• Rainbow.py This is lovely example of a 1D texture. Use the “R” keyboard callback to turn the rainbow
on/off. The illusion is much better if you switch to “immerse” mode. Note that another version of this demo
that doesn’t use TW, calledRainbowSweet , looks better because the illusion is much better if you’re inside
the scene. Or use TW’s “immerse” mode. Original code from Michael Sweet.

• TextureParameters.cc This demonstrates uses of texture parameters, such as decalvs blending. It gen-
erates figure 3.

• LinearNearest.cc This demonstrates the difference betweenLINEAR and NEARESTfor magnifica-
tion/minification. You can see screen shots in figure 4.

• LitUSFlag.cc This demonstrates how to combine Bézier surfaces and texture mapping. Lighting, too.

• ˜ /pub/tw/Tutors/texture . Nate Robins’ tutor. Pretty slick, but he uses textures thatare upside down,
so it can be confusing, too.

5 Images and File Formats

Images come in dozens of formats, with different kinds of compression techniques and so forth. We will look at the
following kinds:

• Compressed Formats. These are supported by all reasonable web browsers, and the file sizes are not excessive.
The different formats have tradeoffs, though, and are complex, because of the compression algorithms. There
are common libraries to read/write these.

– GIF (Graphic Interchange Format): a compressed (loss-less) format limited to 256 colors. It was encum-
bered with a patent, but that has now expired. Allows index transparency, meaning chosen pixels can be in
the “clear” color instead of a normal RGB color.

– JPG (Joint Photographic Experts Group): a compressed (lossy) format that can handle full RGB color
(millions of different colors in an image). No transparency. Tends to be best for pictures of realistic natural
scenes.

– PNG (Portable Network Graphics): an open-source, compressed (loss-less) format that removes some
restrictions of GIF. The file format also stores “vector” information, if the image is produced by a drawing
program. Fireworks uses this format as its native format.

• Uncompressed formats. These formats have a simple structure but the file sizes are large because there is no
compression: it’s just a 2D array of RGB values. These files are typically not supported by web browsers and
shouldn’t be used on the web anyhow because the file sizes are so large.

– BMP (MS-Windows Bitmap format): this is an uncompressed Windows format.

– TIFF (Tag Image File Format): an industry standard pixmap file format, common on Macs. Some digital
cameras produce this.

– PPM (Portable Pixmap): an open-source, uncompressed format. The format is:

∗ P6: two ASCII characters identifying the file type

∗ w, h: two decimal numbers with a space after them giving the width and height of the image

∗ 255: the largest possible value of a color component

∗ a carriage return character (ASCII 13)

∗ data:w × h × 3 bytes giving the R, G, B values for each pixel.

It’s standard to store the image in top-to-bottom, left-to-right order. I got this info from
http://astronomy.swin.edu.au/ ˜ pbourke/dataformats/ppm/

For TW, we will always use PPM format. You can convert images to/from PPM format to other formats using
Windows, Mac or Linux graphics programs or various Linux commands, such as:

8

• ppmtogif

• ppmtojpeg

• bmptoppm

• *topnm

• pnmto*

PNM is a “portable anymap” file; the programs seem to be able toguess whether it’s black and white (PNB), grayscale
(PGM) or color (PPM).

5.1 Demo

• Start Fireworks

• Draw something

• Save (default is PNG, so that’s fine)

• copy it to Puma, say with Fetch or WinSCP.

• convert to PPM:

% display foo.png
% pngtopnm -verbose foo.png > foo.ppm
% display foo.ppm

• Run QuadPPM.py foo.ppm

5.2 Loading Images

We’ll explore the code ofQuadPPM.py.

• You can read in an image from a file and use it as a texture.

• You should read the file in just once, so don’t calltwTex2D from your display function.

• Note that most glut objects don’t have pre-defined texture coordinates. Only the teapot does. You can generate
them for the others, using a fairly incomprehensible interface. We’ll try to learn more about this as the semester
goes on.

6 Binding Textures

For additional speed when using several textures, you can load all the textures, associating each with an integer
identifier (just like display lists) and then referring to them later.

Setup steps:

• Ask for a bunch of identifier numbers:

glGenTextures(num_wanted, result_array);

• Then, for each texture you want, get one of the numbers out of the array and:

9

glBindTexture(GL_TEXTURE_2D, textureNumber);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, something);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER , something);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER , something);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, something);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, something);
glPixelStorei(GL_UNPACK_ALIGNMENT,1);
glTex2D(...);

or
twTex2D(...);

Reference step:When you want a texture, just:

glBindTexture(GL_TEXTURE_2D, textureNumber);

As a convenience, you can replace each of the texture steps with

twLoadTexture(textureIDs[n], filename);

However, this function usesGL_MODULATE, GL_REPEATandGL_LINEAR, which may not be what you want.
Demos:TextureBinding.cc andUSflag-binding.cc . Try spinning either of these. Notice how rela-

tively quick they are. This is because the texture is alreadyloaded into memory on the graphics card, so almost nothing
needs to be sent down the pipeline to draw the next frame of animation.

6.1 Saving Images

You can also save the contents of the framebuffer as a PPM file.Just hit the “S” key. This is accomplished thanks to
an interesting function

void glReadPixels(GLint x, // raster location of first pixe l
GLint y,
GLsizei width, // dimensions of pixel rectangle
GLsizei height,
GLenum format, // GL_RGB
GLenum type, // GL_UNSIGNED_BYTE
GLvoid * pixels);

glReadPixels(0,y,width,1,GL_RGB,GL_UNSIGNED_BYTE, (G Lvoid *) pixels);

The file is saved assaved_image01.ppm in the current directory. If you hit “s” again, you getsaved_
image02.ppm and so forth. In honor of family and friends weekend, convertthese to PNG and put them on your
web page! Or email them!

Note that PPM files are big. In many of our examples, the framebuffer is 500 by 500. The file size is therefore

500 × 500 × 3 + len(P6500 500 255)+ 1 = 750014

% ppmtojpeg -v saved-frame01.ppm > saved-frame01.jpg
ppmtojpeg: Input file has format P6.
It has 500 rows of 500 columns of pixels with max sample value o f 255.
ppmtojpeg: No scan script is being used
% ls -l saved-frame01. *
-rw-rw-r-- 1 cs307 cs307 25290 Nov 7 00:06 saved-frame01.jp g
-rw-r--r-- 1 cs307 cs307 750014 Oct 31 14:33 saved-frame01. ppm

The JPG is a bit smaller! It’s 1/30th the size in this case, butyour mileage may vary.
Since you have a finite filespace quota, manage your space carefully. Once you save a frame, you might convert it

to a compressed format (probably PNG or JPEG) and then discard the PPM file.

10

7 Texture Mapping using Modulate

When you texture-map usingGL_MODULATE, you have to think about the color of the underlying surface.In partic-
ular, if you’re using material and lighting, you have to use materialand textures.

Caroline’s texture tutor can help:˜ cs307/public_html/demos/textureTutor

8 Texture Mapping Onto Odd Shapes

8.1 Triangles

There are actually two choices here. If you want a triangularregion of your texture, there’s no problem, just use the
texture coordinates as usual. If you want to squeeze one edgeof the texture down to a point, it would seem that all you
have to do is use the same texture coordinates for both vertices, but that yields odd results. Instead, you can uselinear
Bézier surfaces to make a triangular region.

Demo:TexturemapTriangles.cc

8.2 Cylinders

If mapping onto a curved surface, we usually represent the surface with parametric equations and map texture param-
eters to curve parameters. For example, a cylinder:

x = r cos(2πu)

y = r sin(2πu)

z = v/h

With the easy mapping:

s = u

t = v

Demo: CylinderFlag.cc This shows how to put a 2D texture onto a non-planar figure. It uses the US flag,
since it’s easy to see the orientation of the texture. Essentially, we have to build the figure ourselves out of vertices,
so that we can define texture coordinates for each vertex. There are two ways to put a flag onto a cylinder: with the
stripes going around the cylinder or along its length. This demo does either; the “l” keyboard callback switches the
orientation. Understanding this code is not easy, but it really only requires understanding polar/cylindrical coordinates.
The texture coordinates are relatively straightforward.

8.3 Bezier Surfaces

We’ve already seen this, and we got another dose of it when we looked at mapping onto triangles, but let’s look at it
again.

To map onto a surface with material and lighting, consider:
Demo:LitUSFlag.cc

8.4 Globes

In general, mapping a flat surface onto a globe (sphere) is bound to produce odd distortions. It’s essentially a 3D
version of the problem of mapping a rectangle onto a circle.

The reverse mapping is interesting to contemplate: namely aflat rectangle that shows the surface of the globe. This
is a problem that cartographers have wrestled with for years. Indeed, both of the examples I gave above for circles and
squares have equivalents in cartography.

The distortion problem presents several tradeoffs, the most important of which is shape distortion versus area
distortion.

11

• area: To preserve the equal-area property, you have to compress the lines of latitude, particularly those far from
the equator. A famous current example is thePetersprojection.

• shape: To preserve shape, you end up expanding the lines of latitude, particularly those far from the equator.
One important side effect of preserving shape is that a straight line on the map is a great circle, which makes
these maps better for navigation. A famous current example is theMercator projection.

Let’s spend a few minutes discussing the pros and cons of these. There are some good web pages linked from the
course home page.

To texture-map a globe, I created a globe by hand, iterating from the north pole (π) to the south pole (−π) and
from 0 longitude around to2π longitude. I converted each (longitude,latitude) pair into (x,y,z) values but also made a
(s,t) texture-map pair. This works pretty well except possibly at the poles.

Math:

x = cos(latitude) ∗ cos(longitude)

y = sin(latitude)

z = cos(latitude) ∗ sin(longitude)

s = 1 − longitude/2π

t = 1 − latitude/π + π/2

Demo:GlobeTexture.cc

12

