bool testLightInRange( const in float lightDistance, const in float cutoffDistance ) { return any( bvec2( cutoffDistance == 0.0, lightDistance < cutoffDistance ) ); } float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) { if( decayExponent > 0.0 ) { #if defined ( PHYSICALLY_CORRECT_LIGHTS ) // based upon Frostbite 3 Moving to Physically-based Rendering // page 32, equation 26: E[window1] // http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf // this is intended to be used on spot and point lights who are represented as luminous intensity // but who must be converted to luminous irradiance for surface lighting calculation float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 ); float maxDistanceCutoffFactor = pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) ); return distanceFalloff * maxDistanceCutoffFactor; #else return pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent ); #endif } return 1.0; } vec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) { return RECIPROCAL_PI * diffuseColor; } // validated vec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) { // Original approximation by Christophe Schlick '94 //;float fresnel = pow( 1.0 - dotLH, 5.0 ); // Optimized variant (presented by Epic at SIGGRAPH '13) float fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH ); return ( 1.0 - specularColor ) * fresnel + specularColor; } // validated // Microfacet Models for Refraction through Rough Surfaces - equation (34) // http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html // alpha is "roughness squared" in Disney’s reparameterization float G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) { // geometry term = G(l)⋅G(v) / 4(n⋅l)(n⋅v) float a2 = pow2( alpha ); float gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) ); float gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) ); return 1.0 / ( gl * gv ); } // validated // from page 12, listing 2 of http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr_v2.pdf float G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) { float a2 = pow2( alpha ); // dotNL and dotNV are explicitly swapped. This is not a mistake. float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) ); float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) ); return 0.5 / max( gv + gl, EPSILON ); } // Microfacet Models for Refraction through Rough Surfaces - equation (33) // http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html // alpha is "roughness squared" in Disney’s reparameterization float D_GGX( const in float alpha, const in float dotNH ) { float a2 = pow2( alpha ); float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0; // avoid alpha = 0 with dotNH = 1 return RECIPROCAL_PI * a2 / pow2( denom ); } // GGX Distribution, Schlick Fresnel, GGX-Smith Visibility vec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) { float alpha = pow2( roughness ); // UE4's roughness vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir ); float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) ); float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) ); float dotNH = saturate( dot( geometry.normal, halfDir ) ); float dotLH = saturate( dot( incidentLight.direction, halfDir ) ); vec3 F = F_Schlick( specularColor, dotLH ); float G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV ); float D = D_GGX( alpha, dotNH ); return F * ( G * D ); } // validated // ref: https://www.unrealengine.com/blog/physically-based-shading-on-mobile - environmentBRDF for GGX on mobile vec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) { float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) ); const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 ); const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 ); vec4 r = roughness * c0 + c1; float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y; vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw; return specularColor * AB.x + AB.y; } // validated float G_BlinnPhong_Implicit( /* const in float dotNL, const in float dotNV */ ) { // geometry term is (n dot l)(n dot v) / 4(n dot l)(n dot v) return 0.25; } float D_BlinnPhong( const in float shininess, const in float dotNH ) { return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess ); } vec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) { vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir ); //float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) ); //float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) ); float dotNH = saturate( dot( geometry.normal, halfDir ) ); float dotLH = saturate( dot( incidentLight.direction, halfDir ) ); vec3 F = F_Schlick( specularColor, dotLH ); float G = G_BlinnPhong_Implicit( /* dotNL, dotNV */ ); float D = D_BlinnPhong( shininess, dotNH ); return F * ( G * D ); } // validated // source: http://simonstechblog.blogspot.ca/2011/12/microfacet-brdf.html float GGXRoughnessToBlinnExponent( const in float ggxRoughness ) { return ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 ); } float BlinnExponentToGGXRoughness( const in float blinnExponent ) { return sqrt( 2.0 / ( blinnExponent + 2.0 ) ); }