uniform vec3 ambientLightColor; vec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) { vec3 irradiance = ambientLightColor; #ifndef PHYSICALLY_CORRECT_LIGHTS irradiance *= PI; #endif return irradiance; } #if NUM_DIR_LIGHTS > 0 struct DirectionalLight { vec3 direction; vec3 color; int shadow; float shadowBias; float shadowRadius; vec2 shadowMapSize; }; uniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ]; void getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) { directLight.color = directionalLight.color; directLight.direction = directionalLight.direction; directLight.visible = true; } #endif #if NUM_POINT_LIGHTS > 0 struct PointLight { vec3 position; vec3 color; float distance; float decay; int shadow; float shadowBias; float shadowRadius; vec2 shadowMapSize; }; uniform PointLight pointLights[ NUM_POINT_LIGHTS ]; // directLight is an out parameter as having it as a return value caused compiler errors on some devices void getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) { vec3 lVector = pointLight.position - geometry.position; directLight.direction = normalize( lVector ); float lightDistance = length( lVector ); if ( testLightInRange( lightDistance, pointLight.distance ) ) { directLight.color = pointLight.color; directLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay ); directLight.visible = true; } else { directLight.color = vec3( 0.0 ); directLight.visible = false; } } #endif #if NUM_SPOT_LIGHTS > 0 struct SpotLight { vec3 position; vec3 direction; vec3 color; float distance; float decay; float coneCos; float penumbraCos; int shadow; float shadowBias; float shadowRadius; vec2 shadowMapSize; }; uniform SpotLight spotLights[ NUM_SPOT_LIGHTS ]; // directLight is an out parameter as having it as a return value caused compiler errors on some devices void getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) { vec3 lVector = spotLight.position - geometry.position; directLight.direction = normalize( lVector ); float lightDistance = length( lVector ); float angleCos = dot( directLight.direction, spotLight.direction ); if ( all( bvec2( angleCos > spotLight.coneCos, testLightInRange( lightDistance, spotLight.distance ) ) ) ) { float spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos ); directLight.color = spotLight.color; directLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay ); directLight.visible = true; } else { directLight.color = vec3( 0.0 ); directLight.visible = false; } } #endif #if NUM_HEMI_LIGHTS > 0 struct HemisphereLight { vec3 direction; vec3 skyColor; vec3 groundColor; }; uniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ]; vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) { float dotNL = dot( geometry.normal, hemiLight.direction ); float hemiDiffuseWeight = 0.5 * dotNL + 0.5; vec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight ); #ifndef PHYSICALLY_CORRECT_LIGHTS irradiance *= PI; #endif return irradiance; } #endif #if defined( USE_ENVMAP ) && defined( PHYSICAL ) vec3 getLightProbeIndirectIrradiance( /*const in SpecularLightProbe specularLightProbe,*/ const in GeometricContext geometry, const in int maxMIPLevel ) { #include vec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix ); #ifdef ENVMAP_TYPE_CUBE vec3 queryVec = flipNormal * vec3( flipEnvMap * worldNormal.x, worldNormal.yz ); // TODO: replace with properly filtered cubemaps and access the irradiance LOD level, be it the last LOD level // of a specular cubemap, or just the default level of a specially created irradiance cubemap. #ifdef TEXTURE_LOD_EXT vec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) ); #else // force the bias high to get the last LOD level as it is the most blurred. vec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) ); #endif envMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb; #elif defined( ENVMAP_TYPE_CUBE_UV ) vec3 queryVec = flipNormal * vec3( flipEnvMap * worldNormal.x, worldNormal.yz ); vec4 envMapColor = textureCubeUV( queryVec, 1.0 ); #else vec4 envMapColor = vec4( 0.0 ); #endif return PI * envMapColor.rgb * envMapIntensity; } // taken from here: http://casual-effects.blogspot.ca/2011/08/plausible-environment-lighting-in-two.html float getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) { //float envMapWidth = pow( 2.0, maxMIPLevelScalar ); //float desiredMIPLevel = log2( envMapWidth * sqrt( 3.0 ) ) - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 ); float maxMIPLevelScalar = float( maxMIPLevel ); float desiredMIPLevel = maxMIPLevelScalar - 0.79248 - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 ); // clamp to allowable LOD ranges. return clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar ); } vec3 getLightProbeIndirectRadiance( /*const in SpecularLightProbe specularLightProbe,*/ const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) { #ifdef ENVMAP_MODE_REFLECTION vec3 reflectVec = reflect( -geometry.viewDir, geometry.normal ); #else vec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio ); #endif #include reflectVec = inverseTransformDirection( reflectVec, viewMatrix ); float specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel ); #ifdef ENVMAP_TYPE_CUBE vec3 queryReflectVec = flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ); #ifdef TEXTURE_LOD_EXT vec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel ); #else vec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel ); #endif envMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb; #elif defined( ENVMAP_TYPE_CUBE_UV ) vec3 queryReflectVec = flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ); vec4 envMapColor = textureCubeUV(queryReflectVec, BlinnExponentToGGXRoughness(blinnShininessExponent)); #elif defined( ENVMAP_TYPE_EQUIREC ) vec2 sampleUV; sampleUV.y = saturate( flipNormal * reflectVec.y * 0.5 + 0.5 ); sampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * RECIPROCAL_PI2 + 0.5; #ifdef TEXTURE_LOD_EXT vec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel ); #else vec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel ); #endif envMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb; #elif defined( ENVMAP_TYPE_SPHERE ) vec3 reflectView = flipNormal * normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0,0.0,1.0 ) ); #ifdef TEXTURE_LOD_EXT vec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel ); #else vec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel ); #endif envMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb; #endif return envMapColor.rgb * envMapIntensity; } #endif