
Introduction CCA-Secure Padding-oracle attacks

Bad News
Chosen-Ciphertext Attacks

Foundations of Cryptography
Computer Science Department

Wellesley College

Fall 2016

Introduction CCA-Secure Padding-oracle attacks

Table of contents

Introduction

CCA-Secure

Padding-oracle attacks

Introduction CCA-Secure Padding-oracle attacks

Ought oh!

• We have defined security
against two types of attacks:
passive eavesdropping and
chosen-plaintext attacks.

• A chosen-ciphertext attack

is even more powerful.

• The adversary can obtain
both encryptions of
messages of its choice (as
before) and decryptions of
ciphertexts of its choice.

Introduction CCA-Secure Padding-oracle attacks

Security against chosen-ciphertext attacks (CCA)

The experiment is defined for any private-key encryption scheme
⇧ = (Gen,Enc,Dec), any adversary A, and any value n for the security
parameter: The CCA indistinguishability experiment PrivKcca

A,⇧(n):

1. A key k is generated by running Gen(1n).

2. The adversary A is given 1n and oracle access to Enck(·) and
Deck(·). It outputs a pair of messages m0,m1 2M of the same
length.

3. A random bit b {0, 1} is chosen. A challenge ciphertext

c Enck(mb) is computed and given to A.

4. The adversary A continues to have oracle access to Enck(·) and
Deck(·), but is not allowed to query the latter on the challenge
ciphertext. Eventually A outputs a bit b0.

5. The output of the experiment is defined to be 1 if b0 = b, and 0
otherwise. We write PrivKeav

A,⇧(n) = 1 if the output is 1 and in this
case we say that A succeeded.

Introduction CCA-Secure Padding-oracle attacks

CCA-secure*

Definition 3.33. A private-key encryption scheme ⇧ = (Gen, Enc,
Dec) had indistinguishable encryption under a chosen-ciphertext

attack if for all probabilistic polynomial-time adversaries A there
exists a negligible function negl such that

Pr[PrivKcca
A,⇧(n) = 1]  1

2
+ negl(n),

where the probability is taken over the random coins used by A, as
well as the random coins used by the experiment (for choosing the
key, the random bit b, and any random coins used in the
encryption process).

*The adversary’s access to the decryption oracle is unlimited except for the

restriction that it may not request decryption of the challenge ciphertext itself.

It is however, allowed to come as close as it wishes.

Introduction CCA-Secure Padding-oracle attacks

Indistinguishability under multiple encryptions

• The natural analogue of
Theorem 3.24 holds for
CCA-security as well.

• That is, if a scheme has
indistinguishable encryption
under a chosen-ciphertext
attack then it has
indistinguishable multiple
encryptions under a
chosen-ciphertext attack.

Introduction CCA-Secure Padding-oracle attacks

Reality check

• But wait a minute, how
realistic is it to assume that
our adversary has such
power?

• I mean with a little care
can’t we avoid such
pedantic nonsense.*

”This is the kind of arrant pedantry up with which I will not put.” – Winston

Churchill

Introduction CCA-Secure Padding-oracle attacks

Insecurity of the schemes we have studied*

Very bad news. None of the schemes we have studied are
CCA-secure.

For example. Consider Construction 3.30, where encryption is
carried out as Enck(m) = hr ,Fk(r)�mi.

An adversary A running in the CCA indistinguishability experiment
can choose m0 = 0n and m1 = 1n. Upon receiving c = hr , si, the
adversary can flip the first bit of s and ask for a decryption of the
resulting ciphertext c 0. Since c

0 6= c this is allowed, and the
decryption oracle answers with either 10n�1 (in which case b = 0)
or 01n�1 (in which case b = 1).

*Any encryption scheme that allows ciphertext to be manipulated in any

”logical way” cannot be CCA-secure. More soon.

Introduction CCA-Secure Padding-oracle attacks

A less contrived example

• We show a
chosen-ciphertext attack on
a natural and widely used
encryption scheme.

• The attack only requires the
ability to determine whether
or not a modified ciphertext
decrypts correctly.

• This is easy to obtain. For
example, a server might
request a retransmission or
terminate a session if it
receives a ciphertext that
does not decrypt correctly.

Introduction CCA-Secure Padding-oracle attacks

PKCS #5 padding

• Since CBC mode requires the length of the plaintext be
multiple of the block length, the message must be padded
before encryption resulting in encoded data.

•
PKCS #5 is a popular approach: Let L be the block length
and b the number of bytes needed. Append to the message a
string containing the integer b represented in 1 byte repeated
b times.

• The receiver recovers the encoded data and checks that the
last byte b is repeated b times. If okay, the padding is then
removed. A “bad padding” error is generated otherwise.

Introduction CCA-Secure Padding-oracle attacks

The attack*

• Let IV , c1, c2 be a ciphertext observed by attacker, and let
m1,m2 be the underlying encoded data.

• Note that
m2 = F

�1
k (c2)� c1,

where k is the key. The second block m2 ends in 0xb . . . 0xb| {z }
b times

.

• Let c 01 be identical to c1 except in the last byte. The
decryption of the ciphertext IV , c 01, c2 is m0

1,m
0
2 where

m

0
2 = F

�1
k (c2)� c

0
1.

• Note that m0
2 is identical to m2 except for a change in its final

byte.

*We describe the attack on a 3-block ciphertext for simplicity.

Introduction CCA-Secure Padding-oracle attacks

More generally

• Similarly if c 01 is the same as c1 except for its ith byte, then
decryption of IV , c 01, c2 will result in m

0
1,m

0
2 where m

0
2 is the

same as m2 except for a change in its ith byte.

• If c 01 = c1 �4 for any string 4, then decryption of IV , c 01, c2
yields m0

1,m
0
2 where m

0
2 = m2 �4

• The attacker begins by modifying the first byte of c1. If
decryption fails, then the the receiver is checking all L bytes of
m

0
2 and therefore b = L.

• Otherwise, the attacker learns that b < L and proceeds to
change the second byte, and so on.

• The left-most modified byte for which decryption fails reveals
the left-most byte being checked by the receiver, and so
reveals b.

Introduction CCA-Secure Padding-oracle attacks

The attacker moves on

• We show how the attacker can learn the final byte of the
message, say B . The attacker knows that m2 ends in 0xB 0xb
0xb . . . 0xb (with 0xb repeated b times).

• For 0  i < 28, define

4i
def
= 0x00 . . . 0x00 0xi

b timesz }| {
0x(b + 1) 0x(b + 1)

� 0x00 . . . 0x00

b timesz }| {
0xb . . . 0xb .

• If ciphertext IV , c1�4i , c2 is sent, then the encoded data will
end in 0x(B � i) 0x(b + 1) . . . 0x(b + 1) with 0x(b + 1)
repeated b times.

• Decryption fails unless 0x(B � i) = 0x(b + 1). The attacker
tries all 28 values for 4i until ones succeeds at which point
she knows B = 0x(b + 1)� i . You take it from here ...

Introduction CCA-Secure Padding-oracle attacks

CAPTCHAs

• A CAPTCHA is a distorted image of, say, an English word
that is easy for humans to read, but hard for a computer to
process. CAPTCHAs are used to ensure that a human user
(not automated software) is interacting with a webpage.

• When a user U loads a webpage served by SW , SW encrypts a
random English word w using a key k shared between SW and
the CAPTCHA server SC and sends the ciphertext c to U
who forwards it to SC .

• SC decrypts c and sends a distorted image of w to U . Finally
U sends the word w back to SW for verification.

Introduction CCA-Secure Padding-oracle attacks

A padding-oracle attack on CAPTCHAs

• SC will issue a “bad
padding” error if decryption
fails on ciphertext it received
from U .

• So U (who is robot after all)
can carry out a
padding-oracle attack and
solve the CAPTACHA
without human involvement,
rendering CAPTCHA
ine↵ective.

