Avoiding collisions Cryptographic hash functions

Foundations of Cryptography Computer Science Department Wellesley College

Fall 2016

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC $Table \ of \ contents$

Introduction

 $Collision\ resistance$

Birthday attacks

Merkle-Damgärd Transform

 $\mathit{Hash}\text{-}\mathit{and}\text{-}\mathit{MAC}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Hash functions

- Hash functions take arbitrary-length strings and compress them into shorter strings.
- The functions you studied in CS230 are examples where hashes are used to achieve $\mathcal{O}(1)$ lookup time in set implementations.
- Collisions are not good for data-retrieval complexity. They are disastrous in cryptographic applications.

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト -Sac

Collision resistance

Defining collisions

- A *collision* in a function *H* is a pair of distinct inputs xand x' such that H(x) = H(x'); we say that x and x' collide under H.
- A function *H* is *collision* resistant if it is infeasible for any probabilistic polynomial-time algorithm to find a collision in H.
- Typically, *H* is a compression function with infinite domain and finite range, so collisions must exist. Our goal is to make them hard to find.

Keyed hash functions

- Formally, we deal with a *family* of hash functions indexed by a "key".
- More precisely, H will be a two-input function that takes as inputs a key s and a string x, and outputs a string H^s(x) ^{def} = H(s, x).
- It must be hard to find a collision in H^s for a randomly-generated s.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Formal definition of a hash function

Definition 5.1. A hash function is a pair of probabilistic polynomial-time algorithms (Gen, H) satisfying the following:

- Gen is a probabilistic algorithm which takes as input a security parameter 1ⁿ and outputs a key s. We assume that 1ⁿ is implicit in s.
- There exists a polynomial ℓ such that H takes as input a key s and a string x ∈ {0,1}* and outputs a string H^s(x) ∈ {0,1}^{ℓ(n)}.

If H^s is defined only for inputs $x \in \{0, 1\}^{\ell'(n)}$ and $\ell'(n) > \ell(n)$, then we say that (Gen, H) is a *fixed-length* hash function for inputs of length $\ell'(n)$. Collision-finding experiments and collision resistance

The collision-finding experiment Hash-coll_{A,Π}(*n*):

- 1. A key s is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} is given s and outputs x, x'. (If Π is a fixed length hash function for inputs of length $\ell'(n)$ then we require $x, x' \in \{0, 1\}^{\ell'(n)}$.)
- 3. The output of the experiment is defined to be 1 if and only if $x \neq x'$ and $H^{s}(x) = H^{s}(x')$. In such a case we say that \mathcal{A} has found a collision.

Definition 5.2. A hash function $\Pi = (\text{Gen}, H)$ is collision resistant if for all probabilistic polynomial-time adversaries \mathcal{A} there exists a negligible function negl such that

$$\Pr[\text{Hash-coll}_{\mathcal{A},\Pi}(n) = 1] \leq \operatorname{negl}(n).$$

A generic "birthday" attack

- There is a generic attack that finds collisions in any hash function. This attack implies a minimal output length needed for a hash function to be secure.
- Model the keyed hash function by a truly random function, H: {0,1}* → {0,1}^ℓ.
- Choose q arbitrary inputs x₁,..., x_q ∈ {0,1}^{2ℓ}, compute y_i := H(x_i) and check whether any two y_i are equal.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○ ◆

Analysis of the "birthday" problem

We did half of the analysis a couple of lectures ago: Lemma A.15. Let y_1, \ldots, y_q be q elements chosen uniformly at random from a set of of size N. The probability that there exists distinct i, j with $y_i = y_j$ is at most $\frac{q^2}{2N}$.

This time we prove:

Lemma A.16. Fix a positive integer N, and say $q \le \sqrt{2N}$ elements y_1, \ldots, y_q are chosen uniformly and independently at random from a set of size N. Then the probability that there exists distinct i, j with $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$.

Remark. These lemmas imply that the birthday attack finds a collision with high probability using $q = \Theta(2^{\ell/2})$ hash-function evaluations. (Sorting the outputs and scanning for collisions requires an additional $\mathcal{O}(\ell \cdot 2^{\ell/2})$ time).

Lemma A.10. Fix a positive integer N, and say $q \le \sqrt{2N}$ elements y_1, \ldots, y_q are chosen uniformly and independently at random from a set of size N. Then the probability that there exists distinct i, j with $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$.

Proof. Let Coll denote the event of a collision and let NoColl_i be the event that there is no collision among y_1, \ldots, y_i . Then NoColl_q = $\overline{\text{Coll}}$ is the event that there is no collision at all.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ 白 ト

Calculating Pr[NoColl_q]

If NoColl_q occurs then NoColl_i must also have occurred for all $i \leq q$. Thus,

 $\Pr[\mathsf{NoColl}_q] = \Pr[\mathsf{NoColl}_1] \cdot \Pr[\mathsf{NoColl}_2 \mid \mathsf{NoColl}_1] \cdots \Pr[\mathsf{NoColl}_q \mid \mathsf{NoColl}_{q-1}].$

Certainly $\Pr[\text{NoColl}_1] = 1$, and if $\{y_1, \ldots, y_i\}$ are distinct, the probability that y_{i+1} does not collide with any of these values is $1 - \frac{i}{N}$. In other words,

$$\Pr[\mathsf{NoColl}_{i+1} \mid \mathsf{NoColl}_i] = 1 - \frac{i}{N}$$

SO

$$\Pr[\operatorname{NoColl}_q] = \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right).$$

From the first two terms of the Taylor series expansion of e^{x} , $1 - \frac{i}{N} \leq e^{-i/N}$, so

$$\begin{aligned} \Pr[\mathsf{NoColl}_q] &= \prod_{i=1}^{q-1} \left(1 - \frac{i}{N} \right) \\ &\leq \prod_{i=1}^{q-1} e^{-i/N} \\ &= e^{-\sum_{i=1}^{q-1} (i/N)} = e^{-q(q-1)/2N}. \end{aligned}$$

We conclude that

$$\Pr[\mathsf{Coll}] = 1 - \Pr[\mathsf{NoColl}_q] \ge 1 - e^{-q(q-1)/2N} \ge \frac{q(q-1)}{4N}.$$

*The last line uses the fact that for all $0 \le x \le 1$, $e^x \le 1 - x/2$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Birthday attacks matter

- A hash function designed with output length 128 bits seems secure since running 2¹²⁸ steps to find a collision seems infeasible.
- However, the generic birthday attack requires only 2⁶⁴ steps, large but not impossible. Furthermore, evil doers may use collisions to their advantage.

Dear Anthony,

The Merkle-Damgärd transform is widely used to convert fixed-length hash functions to full-fledged hashes.

Assume we are given a fixed-length collision-resistant hash function, (Gen, h), that compresses its input length by half; i.e., $\ell'(n) = 2\ell(n)$. We construct a collision-resistant hash (Gen, H) that maps any length inputs to outputs of length $\ell(n)$.

The construction

Construction 5.3.

Let (Gen, h) be a fixed-length collision-resistent hash function for inputs of length $2\ell(n)$ and with output length $\ell(n)$. Construct a variable-length hash function (Gen, H) as follows:

- Gen: Remains unchanged.
- *H*: On input a key *s* and a string $x \in \{0, 1\}^*$ of length
 - $L < 2^{\ell(n)}$, do the following:
 - 1. Set $B := \lceil \frac{L}{\ell} \rceil$. Pad x with zeros so its length is a multiple of ℓ . Parse the padded result as the sequence of ℓ -bit blocks x_1, \ldots, x_B . Set $x_{B+1} := L$, where L is encoded using exactly ℓ bits.
 - 2. Set $z_0 := 0^{\ell}$.
 - 3. For $i = 1, \ldots, B + 1$, compute $z_i := h^s(z_{i-1} || x_i)$.
 - 4. Output z_{B+1} .

INTRODUCTION COLLISION RESISTANCE BIRTHDAY ATTACKS MERKLE-DAMGÄRD TRANSFORM HASH-AND-MAC

Collision-resistance results

Theorem 5.4. If (Gen, h) is a fixed-length collision-resistant hash function, then (Gen, H) is a collision-resistent hash function.

Proof. We show that for any s, a collision in H^s yields a collision in h^s .

Let x and x' be two different strings of respective lengths L and L' such that $H^{s}(x) = H^{s}(x')$. Let x_1, \ldots, x_B be the B blocks of the padded x, and let $x'_1, \ldots, x'_{B'}$ be the B' blocks of the padded x'. Recall that $x_{B+1} = L$ and $x'_{B'+1} = L'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The first of two cases

Case 1: $L \neq L'$. The last step of the computation of $H^{s}(x)$ is $z_{B+1} := h^{s}(Z_{B}||L)$ and the last step of the computation of $H^{s}(x')$ is $z'_{B'+1} := h^{s}(z'_{B'}||L')$. Since $H^{s}(x) = H^{s}(x')$ it follows that $h^{s}(z_{B}||L) = h^{s}(z'_{B'}||L')$.

Collision city: $z_B || L \neq z'_{B'} || L'$, while $L \neq L'$.

INTRODUCTION COLLISION RESISTANCE BIRTHDAY ATTACKS MERKLE-DAMGÄRD TRANSFORM HASH-AND-MAC

The second of two cases

Case 2: L = L'. Then B = B' and $x_{B+1} = x'_{B+1}$. Let z_i, z'_i be intermediate values of x, x' during the computation of $H^s(x), H^s(x')$ respectively.

There must be at least one index *i* such that $x_i \neq x'_i$. Let i^* be the highest index for which $z_{i^*-1} || x_{i^*} \neq z'_{i^*-1} || x'_{i^*}$. If $i^* = B + 1$ then $z_B || x_{B+1}$ and $z'_B || x'_{B+1}$ are different strings that collide for h^s , because

$$h^{s}(z_{B}||x_{B+1}) = z_{B+1} = H^{s}(x) = H^{s}(x') = z'_{B+1} = h^{s}(z'_{B}||x'_{B+1}).$$

If $i^* \leq B$, then the maximality of i^* implies $z_{i*} = z'_{i*}$. Once again, $z_{i^*-1} || x_{i^*} \neq z'_{i^*-1} || x'_{i^*}$ are two strings that collide for h^s .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Collision-resistant hash functions in practice

- SHA-1, a common iterated hash, inputs a string of any length up to 2⁶⁴ - 1, and produces an output of length 160 bits.*
- SHA-1 starts with a compression function that compresses fixed-length inputs by a small amount. A Merkle-Damgärd transform is applied to obtain a collision-resistant hash function.
- Think of 2^{2⁶⁴} pigeons (the 2⁶⁴-bit strings) roosting in 2¹⁶⁰ pigeon holes. Things have got to be crowded. However, nobody has found a hole with two or more pigeons.

*MD4, MD5,and SHA are ancestors (not be trusted); SHA-256, SHA-384, and SHA-512 descendants.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

INTRODUCTION COLLISION RESISTANCE BIRTHDAY ATTACKS MERKLE-DAMGÄRD TRANSFORM HASH-AND-MAC

Big MACs

- We built our MACs from pseudorandom functions. Here we will see another approach that relies on collision-resistant hashing along with message authentication code.
- A another common* approach is based on collision-resistant hash functions constructed using the Merkel-Damgärd transformation. We will save that for next time.

*Not to mention more efficient.

Hash-and-MAC

The idea is simple: A long message m is hashed down to a fixed-length string $H^{s}(m)$ using a collision-resistant has function, then a fixed-length MAC is applied.

Construction 5.5 Let $\Pi = (Mac, Vrfy)$ be a MAC for message of length $\ell(n)$, and let $\Pi_H = (Gen_H, H)$ be a hash function with output of length $\ell(n)$. Construct a Mac $\Pi' = (Gen', Mac', Vrfy')$ for arbitrary-length messages as follows

- Gen': On input 1ⁿ, choose uniform k ∈ {0,1} and run Gen_H(1ⁿ) to obtain a key s. The key is k' := ⟨k, s⟩.
- Mac': On input ⟨k, s⟩ and message m ∈ {0,1}*, output the tag t ← Mac_k(H^s(m)).
- Vrfy': On input a key (k, s), a message m ∈ {0,1}*, and a MAC tag t, output 1 if and only if Vrfy_k(H^s(m), t) [?] = 1.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

If Π is secure, then so is Π'

Theorem 5.6. If Π is a secure MAC for message of length ℓ and Π_H is collision resistant, then Contruction 5.5 is a secure MAC for arbitrary length messages.

Proof. let Π' denote Construction 5.5, and let \mathcal{A}' be a PPT adversary attacking Π' . In Mac-forge_{\mathcal{A}',Π'}, let $k' = \langle k, s \rangle$ denote the MAC key, \mathcal{Q} denote the set of messages whose tags were requested by \mathcal{A}' , and (m^*, t) be the final output of \mathcal{A}' .

Assume WLOG that $m^* \notin Q$ and define coll to be the event that there is an $m \in Q$ for which $H^s(m^*) = H^s(m)$. We have

$$\Pr[Mac-forge_{\mathcal{A}',\Pi'}(n) = 1]$$

- = $\Pr[\mathsf{Mac-forge}_{\mathcal{A}',\Pi'}(n) = 1 \land \mathsf{coll}] + \Pr[\mathsf{Mac-forge}_{\mathcal{A}',\Pi'}(n) = 1 \land \overline{\mathsf{coll}}]$
- \leq Pr[coll] + Pr[Mac-forge_{A',Π'} $(n) = 1 \land \overline{\text{coll}}$].

We show both terms above are negligible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Algorithm for finding a collision in Π_H

Algorithm C The algorithm is given s as an input.

- Choose uniform $k \in \{0, 1\}^n$.
- Run $\mathcal{A}'(1^n)$. When \mathcal{A}' requests a tag on $m_i \in \{0,1\}^*$, return $t_i \leftarrow Mac_k(H^s(m_i))$.
- When A' outputs (m^{*}, t), then if there exists an i for which H^s(m^{*}) = H^s(m_i), output (m^{*}, m_i).

When the input s to C is generated by running $\text{Gen}_H(1^n)$, then the view of \mathcal{A}' is distributed identically to its view in Mac-forge_{\mathcal{A}',Π}, (n). Since C outputs a collision exactly when coll occurs, we have

$$\Pr[\text{Hash-coll}_{\mathcal{C},\Pi_H}(n) = 1] = \Pr[\text{coll}].$$

Since Π_H is collision resistant, we conclude that Pr[coll] is negligible.

INTRODUCTION COLLISION RESISTANCE BIRTHDAY ATTACKS MERKLE-DAMGÄRD TRANSFORM HASH-AND-MAC

We show $\Pr[Mac-forge_{\mathcal{A}',\Pi'}(n) = 1 \land \overline{coll}]$ is negligible

Algorithm A

- Compute $\operatorname{Gen}_H(1^n)$ to obtain s.
- Run A'(1ⁿ). When A' requests a tag on m_i ∈ {0,1}*, then (1) compute m̂_i := H^s(m_i); (2) obtain a tag t_i on m̂_i from the MAC oracle; and (3) give t_i to A'.
- When \mathcal{A}' outputs (m^*, t) , then output $(H^s(m^*), t)$.

In the experiment Mac-forge_{\mathcal{A},Π}(*n*), the view of \mathcal{A}' when run as a subroutine by \mathcal{A} is distributed identically to its view in experiment Mac-forge_{\mathcal{A}',Π}(*n*). Whenever both Mac-forge_{\mathcal{A}',Π}(*n*) = 1 and coll do not occur, \mathcal{A} outputs a valid forgery. Therefore,

 $\Pr[\mathsf{Mac-forge}_{\mathcal{A},\Pi}(n) = 1] = \Pr[\mathsf{Mac-forge}_{\mathcal{A}',\Pi'}(n) = 1 \land \overline{\mathsf{coll}}],]$

and security of Π implies that the former probability is negligible.

・ロト 4 母 ト 4 日 ト 4 日 ト 9 9 9 9