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Hash functions

e Hash functions take
arbitrary-length strings and
compress them into shorter
strings.

e The functions you studied in
CS230 are examples where
hashes are used to achieve
O(1) lookup time in set
implementations.

e Collisions are not good for
data-retrieval complexity.
They are disastrous in
cryptographic applications.
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Defining collisions

e A collision in a function H is
a pair of distinct inputs x
and x’ such that
H(x) = H(x"); we say that
x and x’ collide under H.

e A function H is collision
resistant if it is infeasible for
any probabilistic
polynomial-time algorithm
to find a collision in H.

e Typically, H is a compression
function with infinite domain
and finite range, so collisions
must exist. Our goal is to
make them hard to find.

James Garry, Fastlight  Used with permission.
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Keyed hash functions

e Formally, we deal with a
family of hash functions
indexed by a "key".

e More precisely, H will be a
two-input function that
takes as inputs a key s and a
string x, and outputs a

string H*(x) o H(s, x).
e |t must be hard to find a

collision in H* for a
randomly-generated s.
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Formal definition of a hash function

Definition 5.1. A hash function is a pair of probabilistic
polynomial-time algorithms (Gen, H) satisfying the following:

e Gen is a probabilistic algorithm which takes as input a security
parameter 1”7 and outputs a key s. We assume that 1" is
implicit in s.

e There exists a polynomial £ such that H takes as input a key s
and a string x € {0,1}* and outputs a string
Hs(x) € {0, 1},

If H® is defined only for inputs x € {0,1}¢(") and #'(n) > ¢(n),
then we say that (Gen, H) is a fixed-length hash function for inputs
of length ¢'(n).
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Collision-finding experiments and collision resistance

The collision-finding experiment Hash-coll 4 q(n):
1. A key s is generated by running Gen(1").

2. The adversary A is given s and outputs x, x’. (If I is a fixed
length hash function for inputs of length ¢/(n) then we require
x,x' € {0,170

3. The output of the experiment is defined to be 1 if and only if
x # x" and H*(x) = H*(x’). In such a case we say that A has
found a collision.

Definition 5.2. A hash function N = (Gen, H) is collision resistant
if for all probabilistic polynomial-time adversaries A there exists a
negligible function negl such that

Pr[Hash-coll 4 n(n) = 1] < negl(n).
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A generic "birthday” attack

e There is a generic attack
that finds collisions in any
hash function. This attack QounelAnas

Reproduction rights oﬂbtéizab}le-f[gm"-

implies a minimal output
length needed for a hash
function to be secure.

e Model the keyed hash
function by a truly random

function,
H:{0,1}* — {0,1}*.

e Choose g arbitrary inputs
X1y.--,Xg € {0, 1}26,
compute y; := H(x;) and
check whether any two y;
are equal.
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Analysis of the “birthday” problem

We did half of the analysis a couple of lectures ago:

Lemma A.15. Let y1,...,yq be g elements chosen uniformly at
random from a set of of size N. The probability that there exists
distinct /,j with y; = y; is at most %.

This time we prove:

Lemma A.16. Fix a positive integer N, and say g < V2N elements
Y1,---,Yq are chosen uniformly and independently at random from
a set of size N. Then the probability that there exists distinct i/,

with y; = y; is at least %.

Remark. These lemmas imply that the birthday attack finds a
collision with high probability using g = ©(2%2) hash-function
evaluations. (Sorting the outputs and scanning for collisions
requires an additional O(£ - 2¢/2) time).

BIRTHDAY ATTACKS

Proof of Lemma A.16

Lemma A.10. Fix a positive integer N, and say g < V2N elements
Y1,--.,Yq are chosen uniformly and independently at random from
a set of size N. Then the probability that there exists distinct i/,
with y; = y; is at least %.

Proof. Let Coll denote the event of a collision and let NoColl; be
the event that there is no collision among y1,...,y;. Then
NoColl, = Coll is the event that there is no collision at all.
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Calculating Pr[NoColl,]

If NoCollg occurs then NoColl; must also have occurred for all
i < qg. Thus,

Pr[NoCollg] = Pr[NoColl;]-Pr[NoColl, | NoColl;] - - - Pr[NoColl, | NoColl,_1].

Certainly Pr[NoColl;] =1, and if {y1,...,y;} are distinct, the
probability that yj 41 does not collide with any of these values is
1— ﬁ In other words,

Pr[NoColl;+1 | NoColl;] = 1 — ﬁ
SO

Pr[NoColl,] = ﬁ (1 _ LN> |

i=1

BIRTHDAY ATTACKS

Math 115 returns with a vengeance

From the first two terms of the Taylor series expansion of e*,
1— ﬁ < e /N so

Pr[NoColl,] = ﬁ (1 - ﬁ)

i=1
g—1
e
i=1

— o~ XIHN/N) — g—alg—1)/2N

IA

We conclude that

~1
Pr[Coll] = 1 — Pr[NoCollg] > 1 — e~ 9(a-1/2N > q(ZN )

*The last line uses the fact that for all 0 < x <1, e <1 — x/2.



INTRODUCTION COLLISION RESISTANCH BIRTHDAY ATTACKS MERKLE-DAMGARD TRANSFORM HAsH-AND-MAC

Birthday attacks matter
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Constructing collision-resistant hashes:
Merkle-Damgard transform

The Merkle-Damgard transform is widely used to convert
fixed-length hash functions to full-fledged hashes.
Tp+1=

Ty T2 T LL
” ”r*'.TD ; zH m—}[ (x)

Assume we are given a fixed-length collision-resistant hash
function, (Gen, h), that compresses its input length by half; i.e.,
¢'(n) = 24(n). We construct a collision-resistant hash (Gen, H)
that maps any length inputs to outputs of length ¢(n).
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The construction

Construction 5.3.

Let (Gen, h) be a fixed-length collision-resistent hash function for
inputs of length 2¢(n) and with output length ¢(n). Construct a
variable-length hash function (Gen, H) as follows:

e Gen: Remains unchanged.
e H: On input a key s and a string x € {0,1}* of length
L < 24" do the following:

1. Set B := [£]. Pad x with zeros so its length is a multiple of ¢.

Parse the padded result as the sequence of /-bit blocks

X1,...,Xg. Set xg11 := L, where L is encoded using exactly ¢
bits.

2. Set zy := 0°.

3. Fori=1,...,B+1, compute z; := h*(z;_1]|x;).

4. Output zg.y1.
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Collision-resistance results

Theorem 5.4. If (Gen, h) is a fixed-length collision-resistant hash
function, then (Gen, H) is a collision-resistent hash function.

Proof. We show that for any s, a collision in H* yields a collision
in h°.

Let x and x’ be two different strings of respective lengths L and L’
such that H*(x) = H*(x). Let x1,...,xg be the B blocks of the
padded x, and let x1, ..., xg, be the B’ blocks of the padded x’.
Recall that xg 1 = L and xz/,; = L.
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The first of two cases

Case 1: L # L'. The last step of the computation of H*(x) is
zgy1 := h*(Zg]|L) and the last step of the computation of H*(x')
is zg, 1 := h*(zg/||L"). Since H*(x) = H*(x') it follows that
h*(zg||L) = h*(zg/[|L').

Collision city: zg||L # zg,||L’, while L # L.

MERKLE-DAMGARD TRANSFORM

The second of two cases
Case 2: L =1L'. Then B = B’ and xg41 = X, Let z,z] be

intermediate values of x, x” during the computation of H*(x), H*(x")
respectively.

H'@)

There must be at least one index i such that x; # x/. Let i* be the
highest index for which zj-_1||x;« # z/._{||x/.. If i* = B+ 1 then
zp||xg+1 and zg||xg, , are different strings that collide for h°, because

h*(zg|Ixg41) = zB+1 = H*(x) = H*(X") = zg; = h*(zp||x541)-

If i* < B, then the maximality of i* implies z;, = z/.. Once again,
Zj«_1||xj» # 2l _1||x/. are two strings that collide for h°.
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Collision-resistant hash functions in practice

e SHA-1, a common iterated hash,
inputs a string of any length up to
264 _ 1, and produces an output of
length 160 bits.*

e SHA-1 starts with a compression
function that compresses
fixed-length inputs by a small
amount. A Merkle-Damgard
transform is applied to obtain a
collision-resistant hash function.

e Think of 22 pigeons (the 2-bit

. . . 160 .
Strlngs) rt?ostlng in 2 pigeon *MD4, MD5,and SHA are ancestors
holes. Things have got to be b tructed): SHA-256
crowded. However, nobody has (not be trusted); -290,

SHA-384, and SHA-512

found a hole with two or more
pigeons. descendants.
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Big MAC’s

e We built our MACs from
pseudorandom functions.
Here we will see another
approach that relies on
collision-resistant hashing
along with message
authentication code.

e A another common*
approach is based on
collision-resistant hash
functions constructed using
the Merkel-Damgard
transformation. We will save
that for next time.

*Not to mention more efficient.
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Hash-and-MAC

The idea is simple: A long message m is hashed down to a
fixed-length string H*(m) using a collision-resistant has function,
then a fixed-length MAC is applied.

Construction 5.5 Let 1 = (Mac, Vrfy) be a MAC for message of length
¢(n), and let My = (Geny, H) be a hash function with output of length
¢(n). Construct a Mac " = (Gen’, Mac’, Vrfy') for arbitrary-length
messages as follows

e Gen': On input 1", choose uniform k € {0,1} and run Geny(1") to
obtain a key s. The key is k' := (k,s).

e Mac’: On input (k,s) and message m € {0, 1}*, output the tag
t < Mack(H*(m)).

e Vrfy': On input a key (k,s), a message m € {0,1}*, and a MAC
tag t, output 1 if and only if Vrfy, (H5(m), t) = 1.

HAsH-AND-MAC

If 1 is secure, then so is IT

Theorem 5.6. If T1 is a secure MAC for message of length ¢ and Iy is
collision resistant, then Contruction 5.5 is a secure MAC for arbitrary
length messages.

Proof. let " denote Construction 5.5, and let A’ be a PPT adversary
attacking M’. In Mac-forge 4 ., let k' = (k,s) denote the MAC key, Q
denote the set of messages whose tags were requested by A’, and (m*, t)
be the final output of A’.

Assume WLOG that m* ¢ Q and define coll to be the event that there is
an m € Q for which H*(m*) = H*(m). We have

Pr[Mac-forge 4, n/(n) = 1]
= Pr[Mac-forge 4, 1 (n) = 1 A coll] + Pr[Mac-forge 4, ,(n) = 1 A coll]
< Pr[coll] + Pr[Mac-forge 4 1, (n) = 1 A coll].

We show both terms above are negligible.
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Algorithm for finding a collision in Ty

Algorithm C The algorithm is given s as an input.
e Choose uniform k € {0,1}".

e Run A’(1"). When A’ requests a tag on m; € {0,1}*, return
ti < Mack(HS(m,-)).

e When A’ outputs (m*, t), then if there exists an i for which
H*(m*) = H*(m;), output (m*, m;).

When the input s to C is generated by running Geny(1"), then the view
of A" is distributed identically to its view in Mac-forge 4/ 1 (n). Since C
outputs a collision exactly when coll occurs, we have

Pr[Hash-coll¢ n, (n) = 1] = Pr|coll].

Since My is collision resistant, we conclude that Pr[coll] is negligible.
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We show Pr[Mac-forge 4 n/(n) = 1 A coll] is negligible

Algorithm A
e Compute Geny(1") to obtain s.

e Run A’(1"). When A’ requests a tag on m; € {0,1}*, then (1)
compute m; := H*(m;); (2) obtain a tag t; on m; from the MAC
oracle; and (3) give t; to A’

e When A’ outputs (m*, t), then output (H*(m*), t).

In the experiment Mac-forge 4 1(n), the view of A" when run as a
subroutine by A is distributed identically to its view in experiment

Mac-forge 4, . (n). Whenever both Mac-forge 4, 7 (n) = 1 and coll do
not occur, A outputs a valid forgery. Therefore,

Pr[Mac-forge 4 1(n) = 1] = Pr[Mac-forge 4, 1,(n) = 1 A coll],]

and security of 'l implies that the former probability is negligible. O



