
Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Avoiding collisions
Cryptographic hash functions

Foundations of Cryptography
Computer Science Department

Wellesley College

Fall 2016

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Table of contents

Introduction

Collision resistance

Birthday attacks

Merkle-Damgärd Transform

Hash-and-MAC

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Hash functions

• Hash functions take
arbitrary-length strings and
compress them into shorter
strings.

• The functions you studied in
CS230 are examples where
hashes are used to achieve
O(1) lookup time in set
implementations.

• Collisions are not good for
data-retrieval complexity.
They are disastrous in
cryptographic applications.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Defining collisions

• A collision in a function H is
a pair of distinct inputs x
and x 0 such that
H(x) = H(x 0); we say that
x and x 0 collide under H.

• A function H is collision
resistant if it is infeasible for
any probabilistic
polynomial-time algorithm
to find a collision in H.

• Typically, H is a compression
function with infinite domain
and finite range, so collisions
must exist. Our goal is to
make them hard to find.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Keyed hash functions

• Formally, we deal with a
family of hash functions
indexed by a ”key”.

• More precisely, H will be a
two-input function that
takes as inputs a key s and a
string x , and outputs a

string Hs(x)
def
= H(s, x).

• It must be hard to find a
collision in Hs for a
randomly-generated s.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Formal definition of a hash function

Definition 5.1. A hash function is a pair of probabilistic
polynomial-time algorithms (Gen,H) satisfying the following:

• Gen is a probabilistic algorithm which takes as input a security
parameter 1n and outputs a key s. We assume that 1n is
implicit in s.

• There exists a polynomial ` such that H takes as input a key s
and a string x 2 {0, 1}⇤ and outputs a string
Hs(x) 2 {0, 1}`(n).

If Hs is defined only for inputs x 2 {0, 1}`0(n) and `0(n) > `(n),
then we say that (Gen,H) is a fixed-length hash function for inputs
of length `0(n).

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Collision-finding experiments and collision resistance

The collision-finding experiment Hash-collA,⇧(n):

1. A key s is generated by running Gen(1n).

2. The adversary A is given s and outputs x , x 0. (If ⇧ is a fixed
length hash function for inputs of length `0(n) then we require
x , x 0 2 {0, 1}`0(n).)

3. The output of the experiment is defined to be 1 if and only if
x 6= x 0 and Hs(x) = Hs(x 0). In such a case we say that A has
found a collision.

Definition 5.2. A hash function ⇧ = (Gen,H) is collision resistant
if for all probabilistic polynomial-time adversaries A there exists a
negligible function negl such that

Pr[Hash-collA,⇧(n) = 1]  negl(n).

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

A generic ”birthday” attack

• There is a generic attack
that finds collisions in any
hash function. This attack
implies a minimal output
length needed for a hash
function to be secure.

• Model the keyed hash
function by a truly random
function,
H : {0, 1}⇤ ! {0, 1}`.

• Choose q arbitrary inputs
x1, . . . , xq 2 {0, 1}2`,
compute yi := H(xi) and
check whether any two yi
are equal.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Analysis of the ”birthday” problem

We did half of the analysis a couple of lectures ago:
Lemma A.15. Let y1, . . . , yq be q elements chosen uniformly at
random from a set of of size N. The probability that there exists

distinct i , j with yi = yj is at most q2

2N .

This time we prove:
Lemma A.16. Fix a positive integer N, and say q  p2N elements
y1, . . . , yq are chosen uniformly and independently at random from
a set of size N. Then the probability that there exists distinct i , j
with yi = yj is at least

q(q�1)
4N .

Remark. These lemmas imply that the birthday attack finds a
collision with high probability using q = ⇥(2`/2) hash-function
evaluations. (Sorting the outputs and scanning for collisions
requires an additional O(` · 2`/2) time).

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Proof of Lemma A.16

Lemma A.10. Fix a positive integer N, and say q  p2N elements
y1, . . . , yq are chosen uniformly and independently at random from
a set of size N. Then the probability that there exists distinct i , j
with yi = yj is at least

q(q�1)
4N .

Proof. Let Coll denote the event of a collision and let NoColli be
the event that there is no collision among y1, . . . , yi . Then
NoCollq = Coll is the event that there is no collision at all.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Calculating Pr[NoCollq]

If NoCollq occurs then NoColli must also have occurred for all
i  q. Thus,

Pr[NoCollq] = Pr[NoColl1]·Pr[NoColl2 | NoColl1] · · ·Pr[NoCollq | NoCollq�1].

Certainly Pr[NoColl1] = 1, and if {y1, . . . , yi} are distinct, the
probability that yi+1 does not collide with any of these values is
1� i

N . In other words,

Pr[NoColli+1 | NoColli] = 1� i

N
,

so

Pr[NoCollq] =
q�1Y

i=1

✓
1� i

N

◆
.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Math 115 returns with a vengeance

From the first two terms of the Taylor series expansion of ex ,
1� i

N  e�i/N , so

Pr[NoCollq] =
q�1Y

i=1

✓
1� i

N

◆


q�1Y

i=1

e�i/N

= e�
Pq�1

i=1 (i/N) = e�q(q�1)/2N .

We conclude that

Pr[Coll] = 1� Pr[NoCollq] � 1� e�q(q�1)/2N � q(q � 1)

4N
.

*The last line uses the fact that for all 0  x  1, ex  1� x/2.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Birthday attacks matter

• A hash function designed
with output length 128 bits
seems secure since running
2128 steps to find a collision
seems infeasible.

• However, the generic
birthday attack requires only
264 steps, large but not
impossible. Furthermore,
evil doers may use collisions
to their advantage.

 Birthday attacks 7-8

Birthday attacks in practice

o  The birthday attack
imposes a lower bound on
PRF security.

o  But what harm could a
birthday paradox cause?

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Constructing collision-resistant hashes:
Merkle-Damgärd transform

The Merkle-Damgärd transform is widely used to convert
fixed-length hash functions to full-fledged hashes.

Assume we are given a fixed-length collision-resistant hash
function, (Gen, h), that compresses its input length by half; i.e.,
`0(n) = 2`(n). We construct a collision-resistant hash (Gen,H)
that maps any length inputs to outputs of length `(n).

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

The construction

Construction 5.3.
Let (Gen, h) be a fixed-length collision-resistent hash function for
inputs of length 2`(n) and with output length `(n). Construct a
variable-length hash function (Gen,H) as follows:

• Gen: Remains unchanged.
• H: On input a key s and a string x 2 {0, 1}⇤ of length
L < 2`(n), do the following:
1. Set B := dL` e. Pad x with zeros so its length is a multiple of `.

Parse the padded result as the sequence of `-bit blocks
x1, . . . , xB . Set xB+1 := L, where L is encoded using exactly `
bits.

2. Set z0 := 0`.
3. For i = 1, . . . ,B + 1, compute zi := hs(zi�1kxi).
4. Output zB+1.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Collision-resistance results

Theorem 5.4. If (Gen, h) is a fixed-length collision-resistant hash
function, then (Gen,H) is a collision-resistent hash function.

Proof. We show that for any s, a collision in Hs yields a collision
in hs .

Let x and x 0 be two di↵erent strings of respective lengths L and L0

such that Hs(x) = Hs(x 0). Let x1, . . . , xB be the B blocks of the
padded x , and let x 01, . . . , x

0
B0 be the B 0 blocks of the padded x 0.

Recall that xB+1 = L and x 0B0+1 = L0.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

The first of two cases

Case 1: L 6= L0. The last step of the computation of Hs(x) is
zB+1 := hs(ZBkL) and the last step of the computation of Hs(x 0)
is z 0B0+1 := hs(z 0B0kL0). Since Hs(x) = Hs(x 0) it follows that
hs(zBkL) = hs(z 0B0kL0).

Collision city: zBkL 6= z 0B0kL0, while L 6= L0.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

The second of two cases

Case 2: L = L0. Then B = B 0 and xB+1 = x 0B+1. Let zi , z
0
i be

intermediate values of x , x 0 during the computation of Hs(x),Hs(x 0)
respectively.

There must be at least one index i such that xi 6= x 0i . Let i
⇤ be the

highest index for which zi⇤�1kxi⇤ 6= z 0i⇤�1kx 0i⇤ . If i⇤ = B + 1 then
zBkxB+1 and z 0Bkx 0B+1 are di↵erent strings that collide for hs , because

hs(zBkxB+1) = zB+1 = Hs(x) = Hs(x 0) = z 0B+1 = hs(z 0Bkx 0B+1).

If i⇤  B , then the maximality of i⇤ implies zi⇤ = z 0i⇤ . Once again,

zi⇤�1kxi⇤ 6= z 0i⇤�1kx 0i⇤ are two strings that collide for hs .

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Collision-resistant hash functions in practice

• SHA-1, a common iterated hash,
inputs a string of any length up to
264 � 1, and produces an output of
length 160 bits.*

• SHA-1 starts with a compression
function that compresses
fixed-length inputs by a small
amount. A Merkle-Damgärd
transform is applied to obtain a
collision-resistant hash function.

• Think of 22
64

pigeons (the 264-bit
strings) roosting in 2160 pigeon
holes. Things have got to be
crowded. However, nobody has
found a hole with two or more
pigeons.

*MD4, MD5,and SHA are ancestors

(not be trusted); SHA-256,

SHA-384, and SHA-512

descendants.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Big MACs

• We built our MACs from
pseudorandom functions.
Here we will see another
approach that relies on
collision-resistant hashing
along with message
authentication code.

• A another common*
approach is based on
collision-resistant hash
functions constructed using
the Merkel-Damgärd
transformation. We will save
that for next time.

*Not to mention more e�cient.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Hash-and-MAC

The idea is simple: A long message m is hashed down to a
fixed-length string Hs(m) using a collision-resistant has function,
then a fixed-length MAC is applied.

Construction 5.5 Let ⇧ = (Mac,Vrfy) be a MAC for message of length
`(n), and let ⇧H = (GenH ,H) be a hash function with output of length
`(n). Construct a Mac ⇧0 = (Gen0,Mac0,Vrfy0) for arbitrary-length
messages as follows

• Gen’: On input 1n, choose uniform k 2 {0, 1} and run GenH(1n) to
obtain a key s. The key is k 0 := hk , si.

• Mac’: On input hk , si and message m 2 {0, 1}⇤, output the tag
t Mack(Hs(m)).

• Vrfy’: On input a key hk , si, a message m 2 {0, 1}⇤, and a MAC

tag t, output 1 if and only if Vrfyk(H
s(m), t)

?
= 1.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

If ⇧ is secure, then so is ⇧

0

Theorem 5.6. If ⇧ is a secure MAC for message of length ` and ⇧H is
collision resistant, then Contruction 5.5 is a secure MAC for arbitrary
length messages.

Proof. let ⇧0 denote Construction 5.5, and let A0 be a PPT adversary
attacking ⇧0. In Mac-forgeA0,⇧0 , let k 0 = hk , si denote the MAC key, Q
denote the set of messages whose tags were requested by A0, and (m⇤, t)
be the final output of A0.

Assume WLOG that m⇤ /2 Q and define coll to be the event that there is
an m 2 Q for which Hs(m⇤) = Hs(m). We have

Pr[Mac-forgeA0,⇧0(n) = 1]

= Pr[Mac-forgeA0,⇧0(n) = 1 ^ coll] + Pr[Mac-forgeA0,⇧0(n) = 1 ^ coll]

 Pr[coll] + Pr[Mac-forgeA0,⇧0(n) = 1 ^ coll].

We show both terms above are negligible.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

Algorithm for finding a collision in ⇧H

Algorithm C The algorithm is given s as an input.

• Choose uniform k 2 {0, 1}n.
• Run A0(1n). When A0 requests a tag on mi 2 {0, 1}⇤, return

ti Mack(Hs(mi)).

• When A0 outputs (m⇤, t), then if there exists an i for which
Hs(m⇤) = Hs(mi), output (m⇤,mi).

When the input s to C is generated by running GenH(1n), then the view
of A0 is distributed identically to its view in Mac-forgeA0,⇧,(n). Since C
outputs a collision exactly when coll occurs, we have

Pr[Hash-collC,⇧H
(n) = 1] = Pr[coll].

Since ⇧H is collision resistant, we conclude that Pr[coll] is negligible.

Introduction Collision resistance Birthday attacks Merkle-Damgärd Transform Hash-and-MAC

We show Pr[Mac-forgeA0,⇧0(n) = 1 ^ coll] is negligible

Algorithm A
• Compute GenH(1n) to obtain s.

• Run A0(1n). When A0 requests a tag on mi 2 {0, 1}⇤, then (1)
compute m̂i := Hs(mi); (2) obtain a tag ti on m̂i from the MAC
oracle; and (3) give ti to A0.

• When A0 outputs (m⇤, t), then output (Hs(m⇤), t).

In the experiment Mac-forgeA,⇧(n), the view of A0 when run as a
subroutine by A is distributed identically to its view in experiment
Mac-forgeA0,⇧,(n). Whenever both Mac-forgeA0,⇧,(n) = 1 and coll do
not occur, A outputs a valid forgery. Therefore,

Pr[Mac-forgeA,⇧(n) = 1] = Pr[Mac-forgeA0,⇧0(n) = 1 ^ coll],]

and security of ⇧ implies that the former probability is negligible.

