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The El Gamal encryption scheme

*MALEKAT EL GAMAL

e El Gamal, based on the
hardness of the decisional
Diffie-Hellman (DDH)
problem, is commonly used
public-key encryption
scheme.

e Before introducing the
scheme proper, some
background mathematics.
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A useful lemma™

Lemma 11.15. Let G be a finite group, and let m € G be an
arbitrary element. Then choosing a uniform k <— G and setting
k' := k - m gives the same distribution for k’ as choosing uniform
k' <+ G. That is, forany g € G

Prik-m = g] = 1/|G]|,

where the probability is taken over random choice of k.
Proof.

*In other words, the distribution of k' is independent of m; this means that k'’

contains no information about m.
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A perfectly-secret private-key encryption scheme™

e The sender and receiver share a
random element k < G.

e To encrypt m € G, the sender
computes the ciphertext
k' :=k-m.

e To decrypt the ciphertext k’,
the receiver computes
m = k' /k.

*The one-time pad is exactly of this form. The group is the set of all bit strings
of some fixed length and the group operation is XOR.
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A snag

e This only works if k is truly
random, used only once, and
shared in advance*.

® In a public-key setting, a
different scheme is needed to
allow the receiver to decrypt.

e Pseudorandom to the rescue.
Element k will be defined in
such a way that the receiver will
be able to compute k from her
private key, yet k will “look
random” .

*Bad news for any public-key scheme.
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The El Gamal encryption scheme

Construction 11.16.
Let G be a polynomial-time algorithm that, on input 1”7, outputs a
cyclic group G, its order g (with ||g|| = n), and a generator g.

e Gen: On input 1” run G(1") to obtain (G, g, g). Then choose
a random x € Zg, and compute h := g*. The public key is
(G, q, g, h) and the private key is (G, q, g, x).

e Enc: On input a public key pk = (G, q, g, h) and a message
m € G, choose a random y <— Zq and output the ciphertext

<gy7 h - m>

e Dec: On input a private key sk = (G, g, g, x) and a ciphertext
(c1,c2), output
m:= ¢/ cf.

EL GAMAL

Correctness of El Gamal encryption scheme

To see that decryption succeeds, let (c1, c2) = (g¥, h¥ - m) with
h = g*. Then

Cz_h)/.m_(gx)y.m_gx)/.m
g (&) gv @ g¥

= m.
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A simple example

Example 11.17. Let g =83 and p = 2q + 1 = 167, and let G denote the
group of quadratic residues modulo p.*

Since the order of G is prime, any element of G except 1 is a generator;
take g = 22 =4 mod 167. Suppose the receiver chooses a secret key
x = 37 € Zgz so the public key is

pk = (p,q,g, h) = (167,83,4,[4*" mod 167) = (167,83, 4,76),
where p represents G.
To encrypt m = 65 € G, choose a uniform y € Zg, say y = 71, then

([4™ mod 167],[76"* - 65 mod 167]) = (132, 44)

To decrypt, first compute 124 = [13237 mod 167]; then since
66 = [124~! mod 167], recover m = 65 = [44 - 66 mod 167].

*Since p and g are prime, G is a subgroup of Z; with order q.
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Recall the Decisional Diffie-Hellman (DDH) problem

The decisional Diffie-Hellman (DDH) problem is to distinguish

DHg(h1, h2) from a random group element for randomly chosen
h1, hy.

Definition 8.63. We say that the DDH problem is hard relative to
G if for all probabilistic polynomial-time algorithms A there exists
a negligible function negl such that

PrlA(G,q,8,8",8”,8%) =1] — PrlA(G, q,g,8%,8”,8™) = 1]| < negl(n),

where in each case the probabilities are taken over the experiment
in which G(1") outputs (G, q, g), and the random x, y,z € Zq are
chosen.
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The El Gamal encryption scheme

Theorem 11.18. If the DDH problem is hard relative to G, then the
El Gamal encryption scheme is CPA-secure.

Proof. We prove that El Gamal scheme I1 has indistinguishable
encryptions in the presence of an eavesdropping and let
Proposition 11.3 take it from there.

Let A be a PPT adversary attacking El Gamal in PubK%';(n). We
show that there is a negligible function negl such that

1
Pr[PubK%'n(n) =1] < 5 + negl(n).

EL GAMAL

If things were truly random

Consider 1 where Gen is the same as 1, but encryption of a
message m with respect to the public key pk = (G, q, g, h) is done
by choosing a random y < Z, and z <- Z, and outputting the
ciphertext

<gy,gz ) m>

Lemma 11.15 implies that the second component of the ciphertext
is a uniformly-distributed group element, and, in particular is
independent of the message m. It follows that

1

Pr[PubK® (n) = 1] = 5

Al
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Building a PPT distinguisher for the DDH problem™

Algorithm D:
The algorithm is given G, q, g, h1, h2, h3 as input

e Set pk = (G, q,g, h1) and run A(pk) to obtain two messages
mg, m € G.

e Choose a random bit b, and set ¢; := hy and ¢ := hz - my,.

e Give the ciphertext {(c1, ;) to A and obtain an output bit b'.
If b/ = b output 1; otherwise output O.

We analyze the behavior of D. There are two cases.

*In other words, D receives (G, q, g, h1, h2, h3) where hy = g%, h, = g” and h3
is either ™ or h* for some random x, y, z and the goal of D is to determine
which is the case.

EL GAMAL

First verse

Case 1. Say the input D is generated by running G(1") to obtain
(G, g, g) then choosing a random x,y, z < Zg, and finally setting
hy :=g*, hy := g”, and h3 := g°.

Next D runs A on public key
pk=(G,q,8,8%)
and a ciphertext constructed as
(c1,02) = (g”,8% - my)

The view of A when run by D is distributed identically to its view
in experiment Pubej‘{:l(n). Since D outputs 1 precisely when A
succeeds

x z v 1
Pr[D(G.q.8.8% 8”,87) = 1] = Pr[PubK;(n) = 1] = 5
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Second verse, (nearly) same as the first

Case 2. Say the input D is generated by running G(1") to obtain
(G, g, g) then choosing a random x,y < Zq, and finally setting
hy ;= g%, hy :=g”, and h3 := g".

Next D runs A on public key
pk=1(G,q,8,8")
and a ciphertext constructed as

(c1,0) = (g7, 8% - mp)

The view of A when run by D is distributed identically to its view
in experiment PubK;;(n). Since D outputs 1 precisely when A
succeeds

PrID(G,q,8,8%,8",&) = 1] = Pr[PubKS(n) = 1].

EL GAMAL

Day is done

Since the DDH problem is hard relative to G, there exists a
negligible function negl such that

negl(n) > |Pr[D(G,q,g,8%,8”,8%) =1]—Pr[D(G,q,g,8%,8”,8") =1]|

1
= |5~ Pr[PubK%{"r(n) = 1]

This implies that Pr[PubK%'(n) = 1] < % -+ negl(n) as
required. ]
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Encoding binary strings

Remark. In order to fully specify a usable encryption scheme, we
need to show how to encode binary strings as element of G. Such
an encoding depends upon the group under consideration. Here is
on possibility when G is the subgroup of quadratic residues modulo
a strong prime p, i.e., g = (p —1)/2 is also a prime.

Mapping. We show that the mapping
f:{0,1,...,(p—1)/2} — G given by (M) = [M* mod p] is a
bijection and effectively reversible.

Encoding. We can now map a string m of length n — 1 to an
element m € G as follows: given m € {0,1}"~1, interpret it as an
integer and add 1 to obtain an integer m with 1 < m < g.* Then
take m = [A? mod p.

*Recall that n =|| q ||
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Chosen ciphertext attacks: Sad news once again

® In section 11.2.3 the authors
give a precise definition of
security against
chosen-ciphertext attacks
together with a number of
realistic scenarios where such an
attack might be carried out.

e Sadly, none of the public-key
schemes discussed are secure
under this definition. Indeed,
the text also details attacks
against each of textbook RSA
(not surprising), PKCS #1
v1.5, and El Gamal.




