Genome Assembly

High Throughput Sequencing

Example applications:
• Sequencing a genome (DNA)
• Sequencing a transcriptome and gene expression studies (RNA)
• ChIP (chromatin immunoprecipitation)

Example platforms:
• 454
• Illumina
• SOLiD
DNA Sequencing

CGTAGTAGTCACAGTCTACGTATATGGGCTCAGCATATAGCGTATAGCGGACTTAGCCATCG
>CGTATGCTCACAGTCTACGATATAGCGATAGCGGACTTAGCCATCG
>CGTATGCTCACAGTCTACGATATAGCGGACTTAGCCATCG

Assembly

>GGCCAGGC
>GGCTAGGG
>TAGGGCA

GGCCAGGC
GGCTAGGG
TAGGGCA
Challenges

• Repeats
• Sequencing errors

Implementation
deBruijn graph can be implemented with a hash table

• Each entry in hash table corresponds to an edge in the graph (each key is a k-mer and each value is the number of occurrences of the k-mer).
• Nodes are stored implicitly.

Implementation
Assembly corresponds to Euler path through graph

• Genome sequence starts with any k-mer (edge in the graph)
• Repeatedly extend genome sequence forward, one nucleotide at a time, until no further extensions are possible
 o The genome sequence is extended and a nucleotide added to its end if there exists a nucleotide (A, C, G, or T) that can be added to the end of the k-1 final nucleotides of the genome sequence to form a k-mer that is an edge in the graph.
 o If there are multiple individual nucleotides that can be added to the final k-1 nucleotides in the genome sequence to form k-mer edges in the graph, then the nucleotide resulting in the k-mer edge with the largest number of occurrences is chosen.
 o Each time the genome sequence is extended by a nucleotide, the corresponding k-mer edge is removed from the graph.

Assembly corresponds to Euler path through graph

• Genome sequence starts with any k-mer (edge in the graph)
• Repeatedly extend genome sequence backward, one nucleotide at a time, until no further extensions are possible
 o The genome sequence is extended and a nucleotide added to its front if there exists a nucleotide (A, C, G, or T) that can be added to the front of the k-1 first nucleotides of the genome sequence to form a k-mer that is an edge in the graph.
 o If there are multiple individual nucleotides that can be prepended to the first k-1 nucleotides in the genome sequence to form k-mer edges in the graph, then the nucleotide resulting in the k-mer edge with the largest number of occurrences is chosen.
 o Each time the genome sequence is extended by a nucleotide, the corresponding k-mer edge is removed from the graph.