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Motivation 
 
For many human genes, their nucleotide or protein sequence is similar to that of a gene in 
another organism. Genes from two different organisms can have similar sequences for a 
variety of reasons, but often the genes share a common ancestor and are said to be related 
or homologous. Figure 1 illustrates two homologous sequences from part of a gene that 
codes for a leukemia transcription factor found in many vertebrates, including humans 
and zebra fish. Approximately 30% of human genes have homologs in the genome of a 
worm, 50% in the genome of a fly, 90% in the genome of a fish, and 99% in the genome 
of a chimpanzee. Over time, genes evolve and homologous genes are likely to diverge 
through nucleotide mutations, insertions, and deletions. However, too much change to a 
gene sequence may result in a loss of its function with negative effects on an organism's 
fitness, which will be selected against in the process of evolution.  
 A fundamental problem in genomics is determining whether two sequences, such 
as two DNA sequences or two protein sequences, are related. Here, we restrict ourselves 
to primary sequences, though there are many interesting and important problems 
pertaining to structural and functional relationships. Given two DNA sequences, one 
whose functional role is known and one whose functional role is unknown, recognizing a 
relationship between the two sequences might suggest that the sequence with unknown 
function has a similar role as that of the sequence with known function. Indeed, 
identification and investigation of homologs of the pbx1 gene in humans, flies, and fish, 
shown in part in Figure 1, helped elucidate the role of this oncogene in tumor progression 
[1, 2]. More broadly, in modern genomics, the annotation of newly sequenced genomes is 
primarily established through comparative genomics approaches, i.e., through 
recognizing relationships between a newly sequenced genome and previously annotated 
genomic sequences [3]. 

Ideally, we would establish a firm relationship between the sequences, e.g., that 
the two sequences are derived from a common ancestor and, hence, homologous. 
Unfortunately, without being able to observe the evolution of the sequences from their 
common ancestor, it would be all but impossible to prove a homologous relationship 
between the two sequences. Though we cannot generally prove homology of sequences, 
we can often estimate the similarity of two sequences, and from this similarity we can 
hypothesize or infer homology of the sequences. Like many bioinformatics methods, then, 
computational approaches that assess the similarity of two genomic sequences are 
generally hypothesis-generating. When viewed through the lens of the scientific method, 
these approaches emphasize that part of the scientific method relating to generating 
hypotheses in contrast to more experimentally oriented approaches that emphasize that 
part of the scientific method relating to testing hypotheses. 
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Figure 1: Nucleotide sequences from part of the pbx1 gene in the human (homo sapiens) genome 
and in the zebra fish (Danio rerio) genome are shown at the bottom of the figure. The pbx1 gene 
codes for a pre-B-cell leukemia transcription factor. The similarity of the human and zebra fish 
sequences suggest that the sequences are homologous. While the genome of the common 
ancestor from about 500 million years ago is unknown, the sequence at the top of the figure 
represents part of a hypothesized ancestral gene sequence for pbx1. In the human and zebra fish 
sequences, lower case nucleotides in red illustrate portions of the sequence that have mutated 
from or been inserted into (underlined) the hypothesized ancestral sequence. 

Possible Common Ancestor from 500 million years ago

Human Zebra Fish

ATTTGCCTATCCGAGGAGACCAGGAGGAGGAACCAGACCCGGCTG

Ag

  
The Pairwise Sequence Alignment Problem 
 
Initially, we will focus our attention on global sequence alignments and rudimentary 
scoring models. After establishing a foundation for calculating simpler alignments, we 
will extend the described methods to include local sequence alignments and more 
sophisticated scoring models. 

An alignment of two sequences is a one-to-one mapping of characters in the first 
sequence to characters in the second sequence such that the mapping preserves the order 
of the characters in the two sequences. Often gaps, meant to reflect insertion or deletion 
events that may have occurred as two homologous sequences diverged over time, are 
included as characters of each sequence [4]. For example, a few possible alignments of 
the two genomic sequences CGTTACATG and TGTCACGT are shown in Figure 2. 

In the alignments in Figure 2, the gaps are represented as hyphens. The 
alignments in the figure range from having a single gap to having up to eleven gaps. 
Vertical bars between the alignments illustrate characters in one sequence that are 
mapped to identical characters in the second sequence. A gap in one sequence is 
disallowed from mapping to a gap in the second sequence. In each alignment, excluding 
gaps, the order of characters in each sequence is the same as in the original sequences. 
The alignments are only a few of the many possible alignments of the two sequences. 
Assuming we have some measure for scoring alignments, the pairwise alignment 
problem is the problem of finding the best or optimal scoring alignment for a pair of 
sequences. Finding the optimal pairwise alignment of two sequences is one way to 
estimate the similarity of two sequences and, thus, form a hypothesis about their 
relationship. 

In order to assess whether one alignment is better than another, we benefit from 
having some measure for scoring alignments. Later, we will consider the benefits of 
various different scoring schemes, but for illustrative purposes initially, we will use the 
following scoring scheme. When a character in one sequence is mapped to an identical 
character in the other sequence, depicted with a vertical bar, we will denote this pair of 

TTTtGagTATCCGAGGAGcCCAGGAGGAGGAACccaCAGACccCCaGCTG gccAcTTGCCTaAtgTCCGAGGAGACCAGGAcGGAGGAACttGAtCCCGGaCgTG
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Figure 2.  Fourteen of the many possible pairwise alignments of the sequences CGTTACATG and 
TGTCACGT. In the alignments, hyphens represent gaps and vertical bars represent matching pairs 
of aligned characters. 

characters as a match and add +5 to our cumulative alignment score. When a character in 
one sequence is mapped to a non-identical, non-gap character in the other sequence, we 
will denote this pair of characters as a mismatch and add -4 to our cumulative alignment 
score. When a character in one sequence is mapped to a gap character in the other 
sequence, we will denote this pair of characters as a gap and add -6 to our cumulative 
alignment score. The score of an alignment, then, is the sum of the scores of the 
individually aligned characters. For example, the alignment in Figure 3a has an alignment 
score of 7 since it has 5 matches contributing +5 each, 3 mismatches contributing -4 each, 
and 1 gap contributing -6 each. The alignment in Figure 3b has an alignment score of -1 
since it has 5 matches contributing +5 each, 2 mismatches contributing -4 each, and 3 
gaps contributing -6 each. 

In the pairwise sequence alignment problem, our goal is to determine the best 
scoring alignment for two sequences out of all possible alignments of the two sequences. 
If the two sequences are very short, we may be able to align them well by hand. If our 
goal is to visualize the similarity of the two sequences, then a dot-matrix plot may be 
used [5]. However, if we are interested in calculating the optimal alignment of the two 
sequences and if the sequences are not trivially short, then it is useful to consider 
systematic or algorithmic approaches for doing so. One approach for determining an 
optimal pairwise alignment for two sequences would be to enumerate all possible 
alignments of the two sequences, score each of the alignments, and then determine the 
alignment with maximum score. This approach is problematic in that the number of 
different alignments for a given pair of sequences can be very large. The number of 
alignments is an exponential function of the length of the two sequences and, thus, it is 
computationally intractable to list all possible alignments for two sequences that contain 
thousands or even hundreds of characters. Certainly, we prefer to design an approach for 
computing the optimal pairwise alignment of two sequence that is effective on sequences 
that contain hundreds or thousands of characters, so any approach that requires 
enumerating exponentially many alignments can be ruled out as computationally 
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CGTTACATG-
||  || |

TGT--CACGT
(a) (b)

CGTTACATG
|| || |

TGTCACGT-

Figure 3.  Assuming a score of +5 for each match, -4 for each mismatch, and -6 for each gap, the 
alignment in (a) has a score of 7 and the alignment in (b) has a score of -1. 

infeasible. How then can we find the best scoring alignment of two sequences if we do 
not compute the score of every possible alignment of the two sequences? 
 
Algorithmic Properties 
 
Of course, some problems are better solved by computers than others. In fact, many 
problems can be classified into one of only a few families indicating the problem’s 
amenability to solution using computers. For example, there are problems that computers 
provably cannot solve at all, no matter how much time they are given. A classic example 
of such a problem is the halting problem. It can be shown that no computer program can 
be written that, in general, determines whether another computer program runs forever or 
eventually stops running, i.e., halts [6]. There are other classes of problems that 
computers can solve but, in general, solving them exactly would require more time than 
the age of the universe, so for all practical purposes, optimal solutions cannot be obtained 
computationally [7]. Examples of such problems include various instances of determining 
an optimal alignment of multiple sequences as opposed to a pair of sequences [8], finding 
optimal regulatory sites in a set of sequences [9], and identifying optimal clusters for sets 
of microarray data [10]. For these problems, heuristic methods are often used to 
efficiently identify approximate or suboptimal solutions. Still other classes of problems 
can be solved optimally by computers in a reasonable amount of time. Often, it is not 
immediately obvious which class a problem belongs to. For instance, someone pondering 
the pairwise sequence alignment problem for the first time might reasonably expect that 
the problem could not be solved efficiently since it is computationally intractable to 
enumerate all pairwise alignments for two sequences. However, the problem has 
commonalities with a class of problems that lend themselves to efficient computational 
solutions. Specifically, the pairwise alignment problem has two properties that provably 
enable efficient solution of the problem through a technique known as dynamic 
programming [11]. While a broader investigation of this technique is beyond the scope of 
this paper, we detail the use of dynamic programming below in the context of efficiently 
solving the pairwise sequence alignment problem. 

The pairwise sequence alignment problem has two important properties that 
facilitate its solution [12]. First, the solution to the problem of finding the optimal 
alignment of two sequences can be found by considering the solutions to subproblems, 
i.e., by utilizing the optimal alignments of various subsequences of the original two 
sequences. Second, the subproblems often overlap. These two properties suggest that 
many of the same subproblems present themselves multiple times and solutions to these 
subproblems can be used to solve the problem. As a result, rather than solve a 
subproblem each time it presents itself, we can solve the subproblem once and remember 
the solution by storing it in a table. Then, if the subproblem presents itself again, rather 
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than re-compute the solution we can simply look the solution up in the table, thereby 
saving ourselves the costs of re-computation. 

To formalize the approach for how the optimal alignment of two sequences can be 
computed, we introduce some notation. Let  refer to the subsequencejis ,

1 of sequence s 
from the character at index i to the character at index j, inclusive. For example, is s refers 
to the sequence ACGTGA, consisting of n=6 characters, then  corresponds to the 
subsequence CGT consisting of 3 characters,  corresponds to the subsequence A 
consisting of 1 character, and  corresponds to the subsequence ACGTGA consisting of 6 

characters. Also, let 

4,2s

1,1s

ns ,1

ts ⋅  refer to the optimal alignment score for two sequences s and t. 
Finally, let align(c, d) refer to the alignment score of two individual characters c and d. 
For example, if matches have an alignment score of +5, mismatches have an alignment 
score of -4, and gaps have an alignment score of -6, then align(G, G) would correspond to 
+5, align(G, C) would correspond to -4, and both align(G, -) and align(-, G) would 
correspond to -6.  

It can be shown that the optimal alignment score ts ⋅  of two sequences, s and t, 
can be calculated from three subproblems, i.e., from the optimal alignment scores of 
aligning three pairs of subsequences from s and t [12]. Specifically, for two sequences s 
and t with lengths m and n, respectively, the optimal alignment score for the two 
sequences can be calculated as 
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 Figure 4 illustrates how the optimal pairwise alignment score can be computed for 
two example sequences, s=AGCGTTA and t=ACGTGA. As Figure 4a depicts, the optimal 
score for aligning AGCGTTA and ACGTGA is the largest of three quantities: (1) the optimal 
score for aligning AGCGTT and ACGTGA summed with the score of aligning A, the last 
character of AGCGTTA, with a gap, (2) the optimal score for aligning AGCGTTA and ACGTG 
summed with the score of aligning a gap with A, the last character of ACGTGA, or (3) the 
optimal score for aligning AGCGTT and ACGTG summed with the score of aligning A, the 
last character of AGCGTTA, with A, the last character of ACGTGA. 
 We haven’t yet described how to compute each of the three quantities, namely the 
optimal score of aligning AGCGTT and ACGTGA, the optimal score of aligning AGCGTTA and 
ACGTG, and the optimal score of aligning AGCGTT and ACGTG. However, suppose that we 
somehow learned the answers, namely that the optimal score of aligning AGCGTT and 
ACGTGA is 4, the optimal score of aligning AGCGTTA and ACGTG is 4, and the optimal score 
of aligning AGCGTT and ACGTG is 10. If we assume that matched pairs of characters have 

                                                 
1 We use the term subsequence to mean a consecutive ordered subset of characters in a sequence. In 
contrast, the term subsequence is sometimes defined as an ordered subset of characters in a sequence, 
where the characters are not necessarily consecutive. By our definition, ACG is a subsequence of ACGTGA 
but AG is not a subsequence of ACGTGA. 
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AGCGTTA
ACGTGA

AGCGTT   A
ACGTGA   -

AGCGTT   A
ACGTG    A

AGCGTTA   -
ACGTG     A

+ + +

(a)

AGCGTTA
ACGTGA

AGCGTT   A
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+ + +
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ACGTG   A
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ACGTGA  -
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ACGT    G

AGCGT  T
ACGT   G

AGCGT  T
ACGTG  -

+ + + + + + + + +

* *# # &&

(c)

Figure 4.  The figure illustrates the steps involved in calculating the optimal alignment score of 
sequences AGCGTTA and ACGTGA. (a) The optimal alignment score of the two sequences is 
equal to the maximum of three values, each of which is a sum of two terms. (b) Assuming a 
match score of +5, a mismatch score of -4, and a gap score of -6, the optimal alignment score of 
the two sequences is equal to the maximum of three values, 4+(-6), 4+(-6), and 10+(+5). Thus, 
the optimal alignment score is equal to 15. (c) The optimal alignment score of the two sequences 
can be decomposed into three subproblems, each of which in turn can be decomposed into three 
subproblems. The two subproblems of subproblems marked with an asterisk, *, are similar, the 
two marked with a pound sign, #, are similar, and the two marked with an ampersand, &, are 
similar. 

AGCGTTA
ACGTGA
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| |||    |
A-CGTG   A
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++ +

+

4 -6 4 -6 10 +5

(b)
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an alignment score of +5, mismatched pairs of characters have an alignment score of -4, 
and characters aligned with a gap have an alignment score of -6, then as Figure 4b depicts, 
the optimal score for aligning AGCGTTA and ACGTGA is the largest of three quantities: (1) 
the optimal score for aligning AGCGTT and ACGTGA, which is 4, summed with the score of 
aligning A, the last character of AGCGTTA, with a gap, which is -6 (2) the optimal score for 
aligning AGCGTTA and ACGTG, which is 4, summed with the score of aligning a gap with A, 
the last character of ACGTGA, which is -6, or (3) the optimal score for aligning AGCGTT and 
ACGTG, which is 10, summed with the score of aligning A, the last character of AGCGTTA, 
with A, the last character of ACGTGA, which is +5. The largest of these three quantities, 
namely 4 + (-6), 4 + (-6), and 10 + (+5), is 15. Thus, given our assumptions, the optimal 
alignment score of the two sequences is 15. 
 Notice, we have decomposed the problem of calculating the optimal alignment 
score of two sequences into three subproblems. Each of the three subproblems also 
involves calculating the optimal alignment score for a pair of sequences. However, the 
subproblems are smaller than the original problem in the sense that one or both sequences 
in the subproblems are one character shorter than the sequences in the original problem. 
While we have not proved that the optimal alignment score for two sequences can be 
calculated from the solutions of three subproblems [12], such a proof is beyond the scope 
of this article, we are relying on this fact and illustrating its application. 
 The astute reader will notice that we have not yet described how the three 
subproblems may be solved. But, of course, the subproblems involve computing the 
optimal pairwise alignment score for two sequences, just as the original problem did, so 
the subproblems can be solved by the same approach. Each of the three subproblems can, 
itself, be solved by solving three subproblems of the subproblems, as shown in Figure 4c. 
And each of the subproblems’ subproblems can be solved by decomposing the problem 
into three further subproblems. Each time we generate a new subproblem, one or both of 
the sequences involved is one character smaller than it was previously. If we keep 
decomposing a problem into subproblems involving smaller and smaller sequences, 
eventually we will be dealing with subproblems where one or both of the sequences 
contain no characters. In such a case, we needn’t continue decomposing problems into 
three subproblems, we can trivially compute the optimal alignment score for two 
sequences if one or both of the sequences contains no characters. 
 One might wonder whether characterizing the solution to a problem with three 
subproblems, each of which in turn requires solving three subproblems, and so forth, 
might generate a large number of subproblems needing solution. In general, the answer is 
yes. For two sequences that are each several hundred characters in length, we could easily 
generate an intractable number of subproblems requiring solution. Fortunately, as 
suggested by the second property of the pairwise sequence alignment problem, many of 
the subproblems overlap. As Figure 4c illustrates, many of the subproblems are identical 
to other subproblems. If we solved a subproblem once, rather than re-solve it again, 
assuming we have stored the solution in a table, we can look up the solution to the 
subproblem in the table. The number of unique subproblems that require solution is, in 
fact, tractable, so our table of subproblem solutions can be of manageable size. 
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[2][1][2][0] [2][2] [2][3] [2][4] [2][5] [2][6]

[3][1][3][0] [3][2] [3][3] [3][4] [3][5] [3][6]

[4][1][4][0] [4][2] [4][3] [4][4] [4][5] [4][6]

[5][1][5][0] [5][2] [5][3] [5][4] [5][5] [5][6]

[6][1][6][0] [6][2] [6][3] [6][4] [6][5] [6][6]

[7][1][7][0] [7][2] [7][3] [7][4] [7][5] [7][6]

(a) A C G T G A
0 -6 -12 -18 -24 -30 -36

A 5 -1 -7 -13 -19 -25-6

G -1 1 4 -2-12

C -18

G -24

T -30

T -36

[1][1]

A -42

[1][0] [1][2] [1][3] [1][4] [1][5] [1][6]

[0][1][0][0] [0][2] [0][3] [0][4] [0][5] [0][6]

[2][1][2][0] [2][2] [2][3] [2][4] [2][5] [2][6]

[3][1][3][0] [3][2] [3][3] [3][4] [3][5] [3][6]

[4][1][4][0] [4][2] [4][3] [4][4] [4][5] [4][6]

[5][1][5][0] [5][2] [5][3] [5][4] [5][5] [5][6]

[6][1][6][0] [6][2] [6][3] [6][4] [6][5] [6][6]

[7][1][7][0] [7][2] [7][3] [7][4] [7][5] [7][6]

(b) A C G T G A
0 -6 -12 -18 -24 -30 -36

A 5 -1 -7 -13 -19 -25-6

G -1 1 4 -2 -8 -14-12

C -7 4 -2 0 -6 -12-18

G -13 -2 9 3 5 -1-24

T -19 -8 3 14 8 2-30

T -25 -14 -3 8 10 4-36

[1][1]

A -31 -20 -9 2 4 15-42

[1][0] [1][2] [1][3] [1][4] [1][5] [1][6]

[0][1][0][0] [0][2] [0][3] [0][4] [0][5] [0][6]

[2][1][2][0] [2][2] [2][3] [2][4] [2][5] [2][6]

[3][1][3][0] [3][2] [3][3] [3][4] [3][5] [3][6]

[4][1][4][0] [4][2] [4][3] [4][4] [4][5] [4][6]

[5][1][5][0] [5][2] [5][3] [5][4] [5][5] [5][6]

[6][1][6][0] [6][2] [6][3] [6][4] [6][5] [6][6]

[7][1][7][0] [7][2] [7][3] [7][4] [7][5] [7][6]

(c)

Figure 5.  Tables are depicted for the sequences s=AGCGTTA and t=ACGTGA. The row and 
column index of each table entry are shown in square brackets in the bottom right corner of 
each table entry to enable easy visual reference. Each entry in a table corresponds to the 
optimal score for a particular subsequence of s aligned with a particular subsequence of t. 
For the tables in the figure, a match score of +5, a mismatch score of -4, and a gap score of -
6 are assumed. (a) None of the entries in the table are filled in. (b) The table is partially 
filled in. (c) The table is completely filled in. 

 
Storing Solutions to Subproblems in a Table 
 
Given two sequences s and t of lengths m and n, respectively, we will create a table, T, 
consisting of m+1 rows and n+1 columns. Figure 5 illustrates such a table for the two 
sequences s=AGCGTTA and t=ACGTGA. We will use the notation T[i][j] to refer to the entry 
in the ith row and jth column of table T. Each entry in the table corresponds to the optimal 
score for a particular subsequence of s aligned with a particular subsequence of t. 
Specifically, T[i][j] corresponds to ji ts ,1,1 ⋅ . For example, for the table in Figure 5, T[3][5] 
corresponds to the optimal score of aligning , which is the sequence AGC, with , 
which is the sequence ACGTG. Similarly, in Figure 5, T[7][1] corresponds to the optimal 
score of aligning AGCGTTA with A, T[0][3] corresponds to the optimal score of aligning an 
empty sequence with ACG, i.e., aligning three gaps with ACG, and T[7][6] corresponds to 
the optimal score of aligning AGCGGTA with ACGTGA. Thus, if our goal is to calculate the 
optimal alignment score for s and t, we need only determine the table entry T[m][n]. 
However, as we will see, computing T[m][n] requires first computing values for all other 
entries in the table. 

3,1s 5,1t

 
Populating the Table 
 
As Figure 4 illustrates, the optimal score of aligning AGCGTTA with ACGTGA can be 
expressed as a function of the optimal scores of aligning AGCGTT with ACGTGA, aligning 
AGCGTTA with ACGTG, and aligning AGCGTT with ACGTG. Using our table notation and our 
example in Figure 5, the optimal score of aligning AGCGTTA with ACGTGA, which is 
T[7][6], can be expressed as a function of T[6][6], T[7][5], and T[6][5]. Reformulating 
expression (1) using our table notation, we have 
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and more generally 
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Expression (3) suggests that any entry in a table can be calculated as a function of three 
other table entries, namely the table entry above, to the left, and diagonally above and left 
of the entry to be filled in. For instance, in Figure 5b, T[2][4] is filled in with the score -2 
because -2 is the maximum of the following three quantities, (1) T[1][4] plus the score of 
aligning G with a gap, which is -6, (2) T[2][3] plus the score of aligning T with a gap, 
which is -6, and (3) T[1][3] plus the score of aligning  G with T, which is -4. 
 To fill in a table completely, we begin by filling in the first row and column of the 
table. Since each table entry in the first row and first column corresponds to the optimal 
score of aligning some sequence with an empty sequence, the optimal score of the 
alignment can be calculated as the score of aligning characters in one sequence with the 
appropriate number of gaps. For example, filling in table entry T[5][0] using the 
sequences in Figure 5 corresponds to the optimal score of aligning AGCGT with an empty 
sequence, which corresponds to aligning AGCGT with 5 gaps, and if each gap alignment 
contributes -6, then the optimal alignment score is -30. Once the first row and first 
column of the table are filled in, we proceed from left to right across each row, starting at 
row 1 and ending at row m, filling in each table entry based on expression (3). Our 
approach can be expressed in pseudocode as follows 
 

// Assumes the first row and column of the table have been filled in 
Repeat for each row i = 1 to m 

  Repeat for each column j = 1 to n 
   T[i][j] = max(  T[i-1][j] + align(si,i, -), 
                                                 T[i][j-1] + align(-, tj,j), 
                                                 T[i-1][j-1] + align(si,i, tj,j)) 
 
Once the table has been completely filled in, the optimal score for aligning sequences s 
and t in their entirety can be found at table entry T[m][n]. 
 Notice that the use of a table to calculate the optimal alignment score for two 
sequences is effective precisely because the alignment problem has two properties, 
namely the solution to the problem can be expressed as a function of solutions to 
subproblems and the subproblems overlap. The first property suggests that earlier entries 
in the table can be used to calculate later entries. The second property suggests that it is 
worth storing solutions to subproblems to avoid re-computation since the subproblem 
solutions may be used multiple times. Rather than compute solutions to more than 2n+m 
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A C G T G A
0 -6 -12 -18 -24 -30 -36

A 5 -1 -7 -13 -19 -25-6

G -1 1 4 -2 -8 -14-12

C -7 4 -2 0 -6 -12-18

G -13 -2 9 3 5 -1-24

T -19 -8 3 14 8 2-30

T -25 -14 -3 8 10 4-36

[1][1]

A -31 -20 -9 2 4 15-42

[1][0] [1][2] [1][3] [1][4] [1][5] [1][6]

[0][1][0][0] [0][2] [0][3] [0][4] [0][5] [0][6]

[2][1][2][0] [2][2] [2][3] [2][4] [2][5] [2][6]

[3][1][3][0] [3][2] [3][3] [3][4] [3][5] [3][6]

[4][1][4][0] [4][2] [4][3] [4][4] [4][5] [4][6]

[5][1][5][0] [5][2] [5][3] [5][4] [5][5] [5][6]

[6][1][6][0] [6][2] [6][3] [6][4] [6][5] [6][6]

[7][1][7][0] [7][2] [7][3] [7][4] [7][5] [7][6]

[6][0][6][0] [6][2] [6][3] [6][4] [6][4] [6][5]

[5][1][5][0] [5][2] [5][3] [5][3] [5][4] [5][5]

[3][1][4][0] [4][2] [4][3] [4][3] [5][4] [5][5]

[3][1][3][0] [3][2] [3][2] [4][3] [3][4] [4][5]

[2][1][2][0] [2][1] [2][3] [2][3] [2][4] [2][4]

[1][1][1][0] [1][1] [1][2] [2][3] [2][4] [2][5]

[0][0][0][0] [1][1] [1][2] [1][3] [1][4] [1][5]

[0][0][-1][-1] [0][1] [0][2] [0][3] [0][4] [0][5]Figure 6.  A table is depicted for the 
sequences s=AGCGTTA and t=ACGTGA. The 
row and column index of each table entry are 
shown in square brackets in the bottom right 
corner of each table entry to enable easy visual 
reference. Each entry in the table corresponds 
to the optimal score for a particular 
subsequence of s aligned with a particular 
subsequence of t, assuming a match score of 
+5, a mismatch score of -4, and a gap score of 
-6. In the top left corner of each table entry, 
the indicated row index and column index 
represent the subproblem from which the 
optimal score was calculated for that table 
entry. 

non-unique subproblems, we need only compute solutions to (n+1)*(m+1) unique 
subproblems.  
 The pairwise alignment problem is not the only problem that exhibits the 
abovementioned two properties. Many problems have these two properties and can be 
solved using the technique of dynamic programming. Dynamic programming is the 
problem solving approach of creating a table with solutions to subproblems, and using the 
solutions to subproblems to solve larger problems [11]. Another problem that is often 
addressed using dynamic programming is the problem of calculating an energetically 
favorable secondary structure for a given RNA sequence [13, 14]. 
 
Alignment 
 
While we have described how to compute the optimal pairwise alignment score for two 
sequences, we have not yet discussed how to compute the pairwise alignment associated 
with an optimal score. Fortunately, the table that is constructed to calculate an optimal 
alignment score can also be used to calculate an alignment associated with the optimal 
score. By backtracking through the table, we can construct an alignment, starting at the 
end of the alignment and progressing toward the beginning of the alignment. First, we 
modify our approach for filling in a table so that each table entry keeps track not only of 
an optimal score for a subproblem but also how that score was determined, i.e., which of 
the three possible subproblems yielded the maximum value. Figure 6 shows an example 
table filled in with both optimal scores and, in the top left corner of the table entries, an 
indicator of which of three subproblems yielded the maximum value. For example, in 
Figure 6, table entry T[3][2] shows an optimal alignment score of 4, and the index [2][1] 
in the top left corner of the table entry indicates that the optimal score of 4 was calculated 
as the sum of T[2][1] and the score of aligning the appropriate pair of characters, align(C, 
C). Similarly, for table entry T[6][2], the optimal score of -14 was calculated based on the 
value at index [5][2] in the table. For some table entries, more than one subproblem could 
lead to an optimal score, i.e., when computing the maximum of three values, more than 
one of the three values could achieve the maximum. For instance, the score of -6 in table 
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entry T[3][5] in Figure 6 could have been achieved either from T[3][4]+align(-, G)=-6 or 
from T[2][4]+align(C, G)=-6. The top left corner of the table entry was filled in arbitrarily 
with [2][4] rather than [3][4]. Such a situation represents a scenario where two sequences 
can be aligned in different ways with each achieving an optimal score. 
 To determine an alignment once a table has been filled in, we begin at the last 
table entry T[m][n] and proceed to earlier table entries based on the indices in the top left 
corners of the table entries until we reach T[0][0]. Figure 7 illustrates the construction of 
an alignment based on a filled in table. In the figure, T[7][6] is derived from T[6][5] and 
aligning A with A, which is shown in the first of seven alignments in Figure 7b. T[6][5], 
in turn, is derived from T[5][4] and aligning G with T, which is shown in the second of 
seven alignments in Figure 7b. T[5][4] is derived from T[4][3] and aligning T with T, 
T[4][3] is derived from T[3][2] and aligning G with G, T[3][2] is derived from T[2][1] and 
aligning C with C, T[2][1] is derived from T[1][1] and aligning G with a gap, and T[1][1] 
is derived from T[0][0] and aligning A with A. The growing alignment is shown in Figure 
7b after each of the seven backtracking steps.  
 
Local Pairwise Sequence Alignment 
 
Thus far, we have concentrated on global alignments. Global alignments align the 
entirety of the first sequence with the entirety of the second sequence. Figure 8a depicts 
the optimal global alignment for the two homologous pbx1 sequences shown in Figure 1. 
More common than computation of global alignments is computation of local alignments. 
In fact, computation of local alignments is a core component of the popular BLAST tool 
[15]. Indeed, the name BLAST is an acronym for Basic Local Alignment Search Tool 
(emphasis added). Local alignments allow for the identification of subregions, domains, 
and motifs that may be similar within two sequences. 

Local alignments align a subsequence of one sequence with a subsequence of a 
second sequence. The local alignment problem is the problem of finding the optimal 

Figure 7.  A filled-in table is 
depicted for the sequences 
s=AGCGTTA and t=ACGTGA. 
(a) Arrows in the table 
indicate a backtracking path 
from the last table entry, 
T[7][6], to the first, T[0][0], 
based on the indices in the 
top left corner of table 
entries. Each arrow 
represents a single 
backtracking step. (b) With 
each of the seven 
backtracking steps, a pair of 
characters is added to the 
alignment, starting at the end 
of the alignment and working 
toward the beginning. 

A C G T G A
0 -6 -12 -18 -24 -30 -36

A -6

G

5 -1 -7 -13 -19 -25

-1 1 4 -2 -8-12

C

-14

-7 4 -2 0 -6-18

G

-12

-13 -2 9 3 5-24

T

-1

-19 -8 3 14 8-30

T

2

-25-36

[1][1]

A

-14 -3 8 10 4

-31 -20 -9 2 4 15-42

[1][0] [1][2] [1][3] [1][4] [1][5] [1][6]

[0][1][0][0] [0][2] [0][3] [0][4] [0][5] [0][6]

[2][1][2][0] [2][2] [2][3] [2][4] [2][5] [2][6]

[3][1][3][0] [3][2] [3][3] [3][4] [3][5] [3][6]

[4][1][4][0] [4][2] [4][3] [4][4] [4][5] [4][6]

[5][1][5][0] [5][2] [5][3] [5][4] [5][5] [5][6]

[6][1][6][0] [6][2] [6][3] [6][4] [6][5] [6][6]

[7][1][7][0] [7][2] [7][3] [7][4] [7][5] [7][6]

[6][0][6][0] [6][2] [6][3] [6][4] [6][4] [6][5]

[5][1][5][0] [5][2] [5][3] [5][3] [5][4] [5][5]

[3][1][4][0] [4][2] [4][3] [4][3] [5][4] [5][5]

[3][1][3][0] [3][2] [3][2] [4][3] [3][4] [4][5]

[2][1][2][0] [2][1] [2][3] [2][3] [2][4] [2][4]

[1][1][1][0] [1][1] [1][2] [2][3] [2][4] [2][5]

[0][0][0][0] [1][1] [1][2] [1][3] [1][4] [1][5]

[0][0][-1][-1] [0][1] [0][2] [0][3] [0][4] [0][5]

AGCGTTA
| ||| |
A-CGTGA

GCGTTA
||| |
-CGTGA

CGTTA
||| |
CGTGA

GTTA
|| |
GTGA

TTA
| |
TGA

TA
|
GA

A
|
A(a) (b)
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Figure 8.  Alignments for two sequences, 
s and t, are shown, assuming a match 
score of +5, a mismatch score of -4, and a 
gap score of -6. (a) The optimal global 
alignment for s and t is shown. The 
optimal global alignment has a score of 
60. (b) The optimal local alignment for s
and t is shown. The optimal local 
alignment has a score of 105. 

s       AGTTTTGAGTATCCGAGGAGCCCAGGAGGAGGAACCCACAGACCCCCAGCTG

t       GCCACTTGCCTAATGTCCGAGGAGACCAGGACGGAGGAACTTGATCCCGGACGTG

---AGTTTTGAGT-A--TCCGAGGAGCCCAGGA-GGAGGAACCCACAGA-CCCCCAG-C-TG
|  || |  | |  ||||||||| |||||| ||||||||     || |  || | | ||

GCCA-CTT-GCCTAATGTCCGAGGAGACCAGGACGGAGGAAC---TTGATC--CCGGACGTG

Optimal Global Alignment Score: 60

TCCGAGGAGCCCAGGA-GGAGGAAC
||||||||| |||||| ||||||||
TCCGAGGAGACCAGGACGGAGGAAC

Optimal Local Alignment Score: 105

(a)

(b)

scoring alignment out of all possible alignments of any subsequence of one sequence 
with any subsequence of the other sequence [16]. Intuitively, the local alignment problem 
attempts to align subregions of sequences rather than complete sequences. Thus, a 
solution to the local alignment problem can help identify domains of similarity between 
sequences even if two sequences are not similar in their entirety. Figure 8b depicts the 
optimal local alignment for the two homologous pbx1 sequences from Figure 1. The 
highly conserved portion of pbx1 shown in the local alignment of Figure 8b corresponds 
to a DNA binding region of the Pbx1 leukemia transcription factor [17]. Notice that the 
optimal local alignment score for two sequences should always be greater than or equal to 
the optimal global alignment score for two sequences since the optimal local alignment 
score is optimal over all pairs of subsequences, including the sequences in their entirety. 
 To compute the optimal local alignment score for two sequences, we could 
enumerate all possible local alignments of the two sequences and determine the 
alignment or alignments with highest score. However, as in the case of global alignments, 
as a function of the lengths of the two sequences, there are exponentially many different 
possible local alignments of two sequences. As a result, enumerating all possible local 
alignments of two sequences would be computationally intractable for most sequences of 
interest. Fortunately, like the global alignment problem, the local alignment problem has 
the two properties that solutions to the problem can be determined from solutions to 
subproblems and that subproblems are overlapping [16]. Thus, like our approach for 
solving the global alignment problem, we can solve the local alignment problem by 
filling in a table with solutions to subproblems using dynamic programming. For the local 
alignment problem, filling in the table is similar to filling in the table for the global 
alignment problem. The critical difference is that each table entry is computed as a 
maximum of four values, as shown in equation (4), as opposed to the three values used in 
equation (3) for global alignment. 
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(4)

 
For local alignment, the fourth value of zero in the maximum in equation (4) reflects the 
fact that optimal local alignments cannot have a negative score. Any pair of subsequences 
that yield a negative alignment score cannot be optimal because there is always a pair of 
subsequences with a higher score, a score of zero, namely two empty sequences. When 
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filling in an entry in the local alignment table, a lower, and hence suboptimal, score will 
result from constructing an alignment from a negative scoring local alignment than from 
constructing an alignment from a zero scoring alignment of two empty subsequences.  

Figure 9 shows tables for computing the optimal local alignment score for two 
example sequences. None of the table entries in Figure 9 are negative. In the local 
alignment tables in Figure 9, unlike in the global alignment tables in Figure 5, the row 
and column index of each table entry have not been included in the bottom right corner of 
the table entry. However, to enable re-constructing an optimal alignment from the table 
via backtracking, the row and column index in the top left corner of each entry have been 
included to indicate the subproblem from which the optimal score was calculated for that 
table entry. A score of zero with index [-1][-1] corresponds to an optimal local alignment 
of two empty subsequences. 

For global alignments, the optimal alignment score was in the bottom rightmost 
table entry. For local alignments, the optimal alignment score is the maximum value in 
the table, which could be at any of the entries in the table. In Figure 9, for example, the 
maximum value in the table and, hence, the optimal local alignment score is 14, which is 
found at table entry [6][5]. Once the table has been populated and the optimal local 
alignment score has been determined, by backtracking through the table we can construct 
a local alignment. To determine an alignment once a table has been filled in, we begin at 
the table entry with the optimal score and proceed to earlier table entries based on the 
indices in the top left corners of the table entries until we reach a table entry with a value 
of 0. Figure 10 illustrates the construction of an alignment based on a filled in table. The 
growing alignment is shown in Figure 10b after each of the five backtracking steps. 
 

C G A C A G(a) C G A C A G

A

G

A

T

C

A

C

0 0 0 0 0 0 0

A 0 0 5 0 5 00

G 0 5 0 10

A 0

T 0

C 0

A 0

C 0

[1][1] [1][3]

[0][4]

[-1][-1]

(b)
[-1][-1] [-1][-1] [-1][-1] [-1][-1] [-1][-1] [-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1] [-1][-1]

[-1][-1]

[-1][-1][0][2][-1][-1]

[-1][-1]

[-1][-1]

C G A C A G
0 0 0 0 0 0 0

A 0

G

0 0 5 0 5 0

0

A

0 5 0 1 0 10

0

T

0 0 10 4 6 4

0

C

0 0 4 6 0 2

0

A

5 0 0 9 3 0

0

C

0 0 5 3 14 8

5 0 0 10 8 100
[6][3] [6][5] [6][5]

[5][4] [5][4] [6][5]

[4][0] [4][3] [5][4]

[3][3] [3][3]

[2][2] [3][3] [2][6]

[1][1] [1][3] [1][5]

[0][4]

[-1][-1]

(c)
[-1][-1] [-1][-1] [-1][-1] [-1][-1] [-1][-1] [-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1] [-1][-1]

[-1][-1]

[-1][-1]

[-1][-1] [-1][-1] [-1][-1]

[-1][-1]

[-1][-1] [-1][-1]

[-1][-1] [-1][-1]

[-1][-1][0][2][-1][-1]

[-1][-1] [-1][-1]

[-1][-1] [2][4]

[3][5]

[-1][-1] [-1][-1]

[5][2]

[6][0]

Figure 9.  Tables are depicted for the sequences s=AGATCAC and t=CGACAG. Each entry in 
a table corresponds to the optimal score for a particular subsequence of s locally aligned 
with a particular subsequence of t. For the tables in the figure, a match score of +5, a 
mismatch score of -4, and a gap score of -6 are assumed. (a) None of the entries in the table 
are filled in. (b) The table is partially filled in. (c) The table is completely filled in. In the 
top left corner of each table entry, the indicated row index and column index represent the 
subproblem from which the optimal score was calculated for that table entry. 

 13



Figure 10.  A filled-in local 
alignment table is depicted for 
the sequences s=AGATCAC 
and t=CGACAG. (a) Arrows in 
the table indicate a 

Affine Gap Scoring 
 
As two homologous sequences diverge over time, portions of either sequence may be 
excised or portions of new sequences may be spliced in. The gaps in our pairwise 
sequence alignment model are meant to reflect these evolutionary deletion and insertion 
events. All of the examples above have employed a linear gap score, which is to say that 
all gaps in an alignment have contributed the same amount, e.g., c = -6, to the alignment 
score. Thus, in the above examples, excising (or splicing) a region of seven nucleotides is 
seven times more costly than excising (or splicing) a single nucleotide. However, for a 
cell, the act of excising (or splicing) a portion of DNA may be costly, but the length of 
the portion excised (or spliced) may be less important to the cell. Ideally, our pairwise 
sequence alignment model should account for the different costs associated with an 
excision (or splice) event and the length of the region excised (or spliced). As an 
alternative to the linear gap score, an affine gap score allows for different gaps 
contributing different amounts to the alignment score. A common affine gap scoring 
model is to have the first gap in a series of consecutive gaps contribute one score, α, and 
each subsequent gap in the same series of consecutive gaps contributes a different score, 
β. If gaps represent insertion/deletion events between related biological sequences, an 
affine gap scoring model is meant to reflect the relatively greater cost of the existence of 
a gap as compared to the extension of a gap. In affine gap scoring, typically, the existence 
of a gap is represented by the first character in a series of gaps and is somewhat more 
costly, α, whereas increasing the length of the gap is somewhat less costly, β. Figure 11 
illustrates a sample alignment using both a linear gap scoring model and an affine gap 
scoring model. Empirical evidence suggests that an affine gap scoring system may better 
capture the relationships between biological sequences than a linear gap scoring model 
[4].  
 

backtracking path from the 
maximum table entry, T[6][5], 
to an entry with value 0, based 
on the indices in the top left 
corner of table entries. Each 
arrow represents a single 
backtracking step. (b) With 
each of the five backtracking 
steps, a pair of characters is 
added to the alignment, 
starting at the end of the 
alignment and working toward 
the beginning. 

C G A C A G
0 0 0 0 0 0 0

A 0

G

0 0 5 0 5 0

0 5 0 1 0 100

A 0 0 10 4 6 40

T 0 0 4 6 0 20

C 5 0 0 9 3 00

A 0 0 5 3 14 80

C 5 0 0 10 8 100
[6][3] [6][5] [6][5]

[5][4] [5][4] [6][5]

[4][0] [4][3] [5][4]

[3][3] [3][3]

[2][2] [3][3] [2][6]

[1][1] [1][3] [1][5]

[0][4]

[-1][-1]

GATCA
|| ||
GA-CA

ATCA
| ||
A-CA

TCA
||
-CA

CA
||
CA

A
|
A

(a) (b)
[-1][-1] [-1][-1] [-1][-1] [-1][-1] [-1][-1] [-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1] [-1][-1]

[-1][-1]

[-1][-1]

[-1][-1] [-1][-1] [-1][-1]

[-1][-1]

[-1][-1] [-1][-1]

[-1][-1] [-1][-1]

[-1][-1][0][2][-1][-1]

[-1][-1] [-1][-1]

[-1][-1] [2][4]

[3][5]

[-1][-1] [-1][-1]

[5][2]

[6][0]
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AGGCTACGATCGATCGAGTT
| || |   ||| || |||
A-GCCA---TCG-TC--GTT

c c c c c c c

(a)

AGGCTACGATCGATCGAGTT
| || |   ||| || |||
A-GCCA---TCG-TC--GTT

α α β β α α β

(b)

Figure 11.  Two identical alignments are shown. (a) Assuming a match score of +5, a 
mismatch score of -4, and a linear gap score of c=-6, the alignment has a score of 14. (b) 
Assuming a match score of +5, a mismatch score of -4, and an affine gap scoring model 
with a gap opening score of α=-7 and a gap extension score of β=-2, the alignment has a 
score of 22. 

Alternative Scoring Models 
 
Just as affine gap scoring offers a more flexible and realistic scoring model than linear 
gap scoring, so too can we extend our scoring model for pairs of matched and 
mismatched characters in an alignment. All of the examples above have employed a fixed 
score for all pairs of aligned matching characters and a fixed score for all pairs of aligned 
mismatching characters. In the case of DNA sequences composed of the 4 DNA 
nucleotides, we can construct a scoring matrix of all 16 possible pairs of characters and 
the alignment score for each pair. As Figure 12a illustrates, using a fixed score for 
matches and a fixed score for mismatches, the 4 pairs of matching characters, A|A, C|C, G|G, 
and T|T, all have the same score and the 12 pairs of mismatching characters, A|C, A|G, A|T, 
C|A, C|G, C|T, G|A, G|C, G|T, T|A, T|C, and T|G, all have the same score. Alternatively, we 
could assign different scores to different matches or different mismatches, with the aim of 
better representing various properties of the sequences that we are modeling [18]. For 
example, for DNA sequences, an adenine aligned with a guanine might contribute a less 
negative score to an alignment than an adenine aligned with cytosine, under the 
assumption that replacing one purine with another should penalize an alignment less than 
replacing a purine with a pyrimidine. Figure 12b illustrates a scoring model where not all 
pairs of mismatched characters contribute the same score, rather purines mismatched with 
pyrimidines contribute -4 whereas purines mismatched with other purines contribute -1 

A  C  G  T

A 5 -4 -4 -4

C -4  5 -4 -4

G -4 -4  5 -4

T -4 -4 -4  5

A  C  G  T

A 5 -4 -1 -4

C -4  5 -4 -1

G -1 -4  5 -4

T -4 -1 -4  5

(a) (b)Figure 12.  Two different scoring 
matrices are shown reflecting two 
different sets of possible match and 
mismatch alignment scores for the 16 
pairs of DNA nucleotides. (a) All 
matches contribute a score of 5. All 
mismatches contribute a score of -4. (b) 
All matches contribute a score of 5. A 
purine mismatched with a pyrimidine 
contributes a score of -4 whereas a purine 
mismatched with another purine or a 
pyrimidine mismatched with another 
pyrimidine contributes a score of -1. 

 15



and pyrimidines mismatched with other pyrimidines contribute -1. For protein sequences, 
the cost of replacing one amino acid with another should depend on the properties of the 
amino acids. A scoring matrix for protein sequences should have 20 rows and 20 columns 
to reflect the 20 amino acids. BLOSUM [19] and PAM [20] matrices are commonly used 
as scoring matrices when aligning protein sequences. As a frame of reference, when 
comparing nucleotide sequences, the BLAST program employs a match score of +1, a 
mismatch score of -3, and affine gap scoring with a gap opening score of -5 and gap 
extension score of -2 with one of its default settings [21, 22]. When comparing protein 
sequences, the BLAST program employs the BLOSUM62 scoring matrix and affine gap 
scoring with a gap opening score of -11 and gap extension score of -1 with one of its 
default settings [21, 22].  

While many different scoring models are reasonable for aligning pairs of 
sequences, one desirable property of scoring models is that the expected score of random 
sequences is negative [23]. Why? Intuitively, two sequences independently generated at 
random do not have a relationship and should not be deemed similar, i.e., they should 
have a negative global alignment score. For local alignments, random and unrelated 
portions of two sequences preferably should not contribute positively toward the optimal 
alignment score since one of the goals of local pairwise alignment is to distinguish 
similar portions of two sequences from dissimilar or unrelated portions of two sequences. 
Practically, if the expected score of random sequences were positive, longer local 
alignments would be advantaged over shorter local alignments and optimal local 
alignments would approximate optimal global alignments, rather than distinguish similar 
subsequences. 
 
Significance of an Optimal Alignment 
 
Thus far, we have investigated how to compute an optimal alignment score and an 
optimal alignment of two sequences. But we have not broached the topic of whether an 
optimal alignment is meaningful, i.e., whether an optimal alignment is suggestive that 
two sequences are similar and likely to have a relationship. If we know that the optimal 
alignment score for two sequences is 60, can we say with confidence that the two 
sequences are similar? What if the two sequences have an optimal alignment score of 600 
or 6000? The answer, of course, is “it depends”. Whether an alignment score is 
significant depends on such factors as the length of the sequences, the distribution of 
characters in the sequences, and the scoring model. For example, for two sequences of 
100 characters, an alignment score of 490 might be significant if matched pairs of 
characters received a score of +1 and mismatched pairs of characters received a score of -
1. However, an alignment score of 490 might not be significant for the same two 
sequences if matched pairs of characters received a score of 200 and mismatched pairs of 
characters received a score of -5.   
 In order to assess the significance of an alignment score, often randomized data is 
used to estimate how likely it is that such an alignment score would occur merely by 
chance [23]. The underlying assumption here is that the optimal alignment score for two 
similar or related sequences should have a higher probability of being larger than the 
optimal alignment score for two random or unrelated sequences. The biological 
motivation for this assumption is that random mutations are more likely to be deleterious 
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Figure 13.  A histogram of 10,000 
optimal alignment scores for 10,000 pairs 
of randomly generated sequences. Each 
sequence in each pair of randomly 
generated sequences is 50 characters in 
length and has an expected GC content of 
50%. Of the 10,000 alignment scores, 631 
or 6.31% have a score of 60 or higher. 
 
 

to related pairs of sequences than to random or unrelated pairs of sequences and, thus, 
less likely to be preserved owing to selective evolutionary pressure [24]. 
 One computational approach that uses randomized data to estimate the 
significance of an alignment score of two sequences, s and t, proceeds as follows. A large 
number, say 10,000, of pairs of random sequences are generated. Each pair of random 
sequences should be similar to the original pair of sequences, s and t, in that the two 
sequences in the random pair should have the same lengths as s and t. Further, the 
distribution of characters in each random pair should approximate the distribution of 
characters in s and t. For instance, if s has a GC content of 46% then so too should one of 
the sequences in the random pair. A random sequence with such a distribution of 
characters might be generated by randomly permuting the order of characters in s or by 
generating a random sequence de novo with the expected distribution of characters. Then, 
the optimal alignment score, either global or local depending on the application, can be 
computed for each pair of random sequences. Figure 13 shows a histogram of 10,000 
optimal alignment scores for 10,000 pairs of randomly generated sequences. As can be 
seen from the histogram, almost all of the 10,000 alignment scores fall between 20 and 
80. 6.31% of the 10,000 alignments achieved a score of 60 or greater. Thus, the original 
sequences, s and t, had approximately a 6% chance of achieving an optimal alignment 
score of 60 or greater merely be chance. The p-value of an optimal local alignment score, 
S, for two sequences is the likelihood that two random sequences, of the same lengths and 
compositions as the original sequences, would have an optimal local alignment score 
greater than or equal to S.  Thus, if the optimal local alignment score for s and t is S=60, 
then the p-value for this alignment score is approximately p=0.06. A larger p-value 
suggests that an alignment score has a higher likelihood of occurring merely by chance. 
A smaller p-value suggests that an alignment score has a lower likelihood of occurring 
merely by chance. Smaller p-values generally suggest higher significance, i.e., that an 
alignment score is less likely to have occurred by chance and more likely to have 
occurred as a result of some other factor such as selective evolutionary pressure.  
 Generally, p-values rather than alignment scores are used to assess the statistical 
significance of an alignment of two sequences. Alignment scores depend on the lengths 
of the sequences being aligned and the distribution of characters in the sequences. An 
alignment score of 60 may be significant for two sequences of length 30 characters but 
not for two sequences of length 100 characters. In Figure 13, the histogram would shift to 
the left for two sequences of length 30 characters and to the right for two sequences of 
100 characters, assuming the same scoring model. Thus, without knowing such details 
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about the sequences, the alignment score may be meaningless. Similarly, an alignment 
score of 60 may be significant for one scoring model but not for another. p-values have 
the advantage over alignment scores that they account for these different sequence 
properties and scoring models. While there is no firm threshold for p-values, often as a 
guide researchers consider p-values less than 0.01 to be significant. 
 
Conclusions 
 
Determining the similarity of two sequences is a fundamental problem in genomics. The 
similarity of a pair of sequences may suggest a relationship between the sequences. Often, 
when a scientist determines the nucleotide sequence of a previously uncharacterized 
genomic region or the amino acid sequence of a previously uncharacterized protein, the 
next step is comparison of the sequence to other sequences in order to identify possibly 
related elements. Pairwise alignment indicates the similarity of two sequences. As 
described in this article, the problem of computing the optimal pairwise alignment for 
two sequences can be solved efficiently. Calculation of both the optimal global alignment 
and the optimal local alignment of a pair of sequences was illustrated. Though the 
examples in this article focused primarily on nucleotide sequences, the same approaches 
are directly applicable to protein sequences. 
 While this article deals specifically with the pairwise alignment problem, there are 
a number of broader themes throughout the article that apply to other bioinformatics 
problems. We conclude with explicit statement of some of the more important of these 
themes. 
 

• Experimental approaches often validate or refute hypotheses. Computational 
approaches often suggest hypotheses and, in some cases, indicate levels of 
confidence in the hypotheses. Computing the optimal pairwise alignment for two 
sequences, for example, may indicate the similarity of the sequences, which can 
suggest a relationship between the sequences, i.e., a hypothesis. Experimental and 
computational approaches are not competing approaches for addressing the same 
problem but rather are complimentary approaches in the application of the 
scientific method. 

• When computational approaches generate hypotheses, it is often useful if the 
probabilities that the generated hypotheses are correct can be estimated. For many 
problems, randomly generated data can be used to estimate the significance of an 
observation, i.e., how likely the observation is to have occurred merely by chance. 

• Some problems cannot be solved computationally. Some problems can be solved 
computationally, but not efficiently. Some problems can be solved efficiently 
computationally. It is not always obvious which of the abovementioned classes a 
problem may fall into. Identifying various properties of a problem can be the 
difference between finding a solution to the problem or not, and identifying such 
properties often requires algorithmic insights. 

• Some problems are solved exactly or optimally. Other problems are addressed 
using a heuristic approach. Heuristic methods for solving a problem may not 
solve a problem exactly or optimally, but they can generate good possibly 
suboptimal solutions, and often they can do so very efficiently. The 
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abovementioned solution to the pairwise alignment problem is not heuristic, it 
provably generates an optimal solution. BLAST is a heuristic tool in that, for the 
purposes of efficiency, it does not align a query sequence to every target sequence 
in a large database, but rather aligns a query sequence to a subset of target 
sequences in the database. Heuristically, BLAST identifies a subset of target 
sequences in the database that are likely to be similar to the query sequence. 
Heuristic approaches often offer a trade-off between sensitivity and efficiency.  

• Many computational approaches are improved by incorporating additional 
biological insights into their underlying method or model. In the case of the 
pairwise alignment problem, an alignment is more meaningful if the scoring 
matrix or model is well-founded biologically. 

• Recent advances have enabled scientists to gather large amounts of, often 
heterogeneous, data. One of the roles of many bioinformatics tools is efficient 
analysis of large data sets with the aim of extracting new biological insights from 
the wealth of data.  
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