
The Pairwise Sequence Alignment Problem

Brett Pellock1 and Brian Tjaden2

Motivation

For many human genes, their nucleotide or protein sequence is similar to that of a gene in
another organism. Genes from two different organisms can have similar sequences for a
variety of reasons, but often the genes share a common ancestor and are said to be related
or homologous. Figure 1 illustrates two homologous sequences from part of a gene that
codes for a leukemia transcription factor found in many vertebrates, including humans
and zebra fish. Approximately 30% of human genes have homologs in the genome of a
worm, 50% in the genome of a fly, 90% in the genome of a fish, and 99% in the genome
of a chimpanzee. Over time, genes evolve and homologous genes are likely to diverge
through nucleotide mutations, insertions, and deletions. However, too much change to a
gene sequence may result in a loss of its function with negative effects on an organism's
fitness, which will be selected against in the process of evolution.
 A fundamental problem in genomics is determining whether two sequences, such
as two DNA sequences or two protein sequences, are related. Here, we restrict ourselves
to primary sequences, though there are many interesting and important problems
pertaining to structural and functional relationships. Given two DNA sequences, one
whose functional role is known and one whose functional role is unknown, recognizing a
relationship between the two sequences might suggest that the sequence with unknown
function has a similar role as that of the sequence with known function. Indeed,
identification and investigation of homologs of the pbx1 gene in humans, flies, and fish,
shown in part in Figure 1, helped elucidate the role of this oncogene in tumor progression
[1, 2]. More broadly, in modern genomics, the annotation of newly sequenced genomes is
primarily established through comparative genomics approaches, i.e., through
recognizing relationships between a newly sequenced genome and previously annotated
genomic sequences [3].

Ideally, we would establish a firm relationship between the sequences, e.g., that
the two sequences are derived from a common ancestor and, hence, homologous.
Unfortunately, without being able to observe the evolution of the sequences from their
common ancestor, it would be all but impossible to prove a homologous relationship
between the two sequences. Though we cannot generally prove homology of sequences,
we can often estimate the similarity of two sequences, and from this similarity we can
hypothesize or infer homology of the sequences. Like many bioinformatics methods, then,
computational approaches that assess the similarity of two genomic sequences are
generally hypothesis-generating. When viewed through the lens of the scientific method,
these approaches emphasize that part of the scientific method relating to generating
hypotheses in contrast to more experimentally oriented approaches that emphasize that
part of the scientific method relating to testing hypotheses.

1 Department of Biology, Providence College, Providence, RI.
2 Department of Computer Science, Wellesley College, Wellesley, MA.

Figure 1: Nucleotide sequences from part of the pbx1 gene in the human (homo sapiens) genome
and in the zebra fish (Danio rerio) genome are shown at the bottom of the figure. The pbx1 gene
codes for a pre-B-cell leukemia transcription factor. The similarity of the human and zebra fish
sequences suggest that the sequences are homologous. While the genome of the common
ancestor from about 500 million years ago is unknown, the sequence at the top of the figure
represents part of a hypothesized ancestral gene sequence for pbx1. In the human and zebra fish
sequences, lower case nucleotides in red illustrate portions of the sequence that have mutated
from or been inserted into (underlined) the hypothesized ancestral sequence.

Possible Common Ancestor from 500 million years ago

Human Zebra Fish

ATTTGCCTATCCGAGGAGACCAGGAGGAGGAACCAGACCCGGCTG

Ag

The Pairwise Sequence Alignment Problem

Initially, we will focus our attention on global sequence alignments and rudimentary
scoring models. After establishing a foundation for calculating simpler alignments, we
will extend the described methods to include local sequence alignments and more
sophisticated scoring models.

An alignment of two sequences is a one-to-one mapping of characters in the first
sequence to characters in the second sequence such that the mapping preserves the order
of the characters in the two sequences. Often gaps, meant to reflect insertion or deletion
events that may have occurred as two homologous sequences diverged over time, are
included as characters of each sequence [4]. For example, a few possible alignments of
the two genomic sequences CGTTACATG and TGTCACGT are shown in Figure 2.

In the alignments in Figure 2, the gaps are represented as hyphens. The
alignments in the figure range from having a single gap to having up to eleven gaps.
Vertical bars between the alignments illustrate characters in one sequence that are
mapped to identical characters in the second sequence. A gap in one sequence is
disallowed from mapping to a gap in the second sequence. In each alignment, excluding
gaps, the order of characters in each sequence is the same as in the original sequences.
The alignments are only a few of the many possible alignments of the two sequences.
Assuming we have some measure for scoring alignments, the pairwise alignment
problem is the problem of finding the best or optimal scoring alignment for a pair of
sequences. Finding the optimal pairwise alignment of two sequences is one way to
estimate the similarity of two sequences and, thus, form a hypothesis about their
relationship.

In order to assess whether one alignment is better than another, we benefit from
having some measure for scoring alignments. Later, we will consider the benefits of
various different scoring schemes, but for illustrative purposes initially, we will use the
following scoring scheme. When a character in one sequence is mapped to an identical
character in the other sequence, depicted with a vertical bar, we will denote this pair of

TTTtGagTATCCGAGGAGcCCAGGAGGAGGAACccaCAGACccCCaGCTG gccAcTTGCCTaAtgTCCGAGGAGACCAGGAcGGAGGAACttGAtCCCGGaCgTG

 2

CGTTACATG
|| || |

TGTCACGT-
CGTTACATG-

| || |
--TGTCACGT

CGTT-ACATG-
| | || |

TG-TCAC--GT
-CGTTACA-TG
| | ||

T-G-T-CACGT

CG-TTACATG
| |

TGTC-A-CGT
CGTT-ACATG

| || |
-TGTCACGT-

C-GTT-ACATG
| | || |

-TG-TCACGT-

CGTTACATG
|

T-GTCACGT

CGTTACATG-
|| || |

TGT--CACGT

C-----GTTACATG
||

TGTCACGT------

CGTTACA--TG
| || |

T-GT-CACGT-

CGT-TACATG-
| || |

T-G-T-CACGT

C-G-T-TACATG
||

TG-T-C-AC-GT

-CGTTAC-ATG
|| |

T-GTCA-C-GT

Figure 2. Fourteen of the many possible pairwise alignments of the sequences CGTTACATG and
TGTCACGT. In the alignments, hyphens represent gaps and vertical bars represent matching pairs
of aligned characters.

characters as a match and add +5 to our cumulative alignment score. When a character in
one sequence is mapped to a non-identical, non-gap character in the other sequence, we
will denote this pair of characters as a mismatch and add -4 to our cumulative alignment
score. When a character in one sequence is mapped to a gap character in the other
sequence, we will denote this pair of characters as a gap and add -6 to our cumulative
alignment score. The score of an alignment, then, is the sum of the scores of the
individually aligned characters. For example, the alignment in Figure 3a has an alignment
score of 7 since it has 5 matches contributing +5 each, 3 mismatches contributing -4 each,
and 1 gap contributing -6 each. The alignment in Figure 3b has an alignment score of -1
since it has 5 matches contributing +5 each, 2 mismatches contributing -4 each, and 3
gaps contributing -6 each.

In the pairwise sequence alignment problem, our goal is to determine the best
scoring alignment for two sequences out of all possible alignments of the two sequences.
If the two sequences are very short, we may be able to align them well by hand. If our
goal is to visualize the similarity of the two sequences, then a dot-matrix plot may be
used [5]. However, if we are interested in calculating the optimal alignment of the two
sequences and if the sequences are not trivially short, then it is useful to consider
systematic or algorithmic approaches for doing so. One approach for determining an
optimal pairwise alignment for two sequences would be to enumerate all possible
alignments of the two sequences, score each of the alignments, and then determine the
alignment with maximum score. This approach is problematic in that the number of
different alignments for a given pair of sequences can be very large. The number of
alignments is an exponential function of the length of the two sequences and, thus, it is
computationally intractable to list all possible alignments for two sequences that contain
thousands or even hundreds of characters. Certainly, we prefer to design an approach for
computing the optimal pairwise alignment of two sequence that is effective on sequences
that contain hundreds or thousands of characters, so any approach that requires
enumerating exponentially many alignments can be ruled out as computationally

 3

CGTTACATG-
|| || |

TGT--CACGT
(a) (b)

CGTTACATG
|| || |

TGTCACGT-

Figure 3. Assuming a score of +5 for each match, -4 for each mismatch, and -6 for each gap, the
alignment in (a) has a score of 7 and the alignment in (b) has a score of -1.

infeasible. How then can we find the best scoring alignment of two sequences if we do
not compute the score of every possible alignment of the two sequences?

Algorithmic Properties

Of course, some problems are better solved by computers than others. In fact, many
problems can be classified into one of only a few families indicating the problem’s
amenability to solution using computers. For example, there are problems that computers
provably cannot solve at all, no matter how much time they are given. A classic example
of such a problem is the halting problem. It can be shown that no computer program can
be written that, in general, determines whether another computer program runs forever or
eventually stops running, i.e., halts [6]. There are other classes of problems that
computers can solve but, in general, solving them exactly would require more time than
the age of the universe, so for all practical purposes, optimal solutions cannot be obtained
computationally [7]. Examples of such problems include various instances of determining
an optimal alignment of multiple sequences as opposed to a pair of sequences [8], finding
optimal regulatory sites in a set of sequences [9], and identifying optimal clusters for sets
of microarray data [10]. For these problems, heuristic methods are often used to
efficiently identify approximate or suboptimal solutions. Still other classes of problems
can be solved optimally by computers in a reasonable amount of time. Often, it is not
immediately obvious which class a problem belongs to. For instance, someone pondering
the pairwise sequence alignment problem for the first time might reasonably expect that
the problem could not be solved efficiently since it is computationally intractable to
enumerate all pairwise alignments for two sequences. However, the problem has
commonalities with a class of problems that lend themselves to efficient computational
solutions. Specifically, the pairwise alignment problem has two properties that provably
enable efficient solution of the problem through a technique known as dynamic
programming [11]. While a broader investigation of this technique is beyond the scope of
this paper, we detail the use of dynamic programming below in the context of efficiently
solving the pairwise sequence alignment problem.

The pairwise sequence alignment problem has two important properties that
facilitate its solution [12]. First, the solution to the problem of finding the optimal
alignment of two sequences can be found by considering the solutions to subproblems,
i.e., by utilizing the optimal alignments of various subsequences of the original two
sequences. Second, the subproblems often overlap. These two properties suggest that
many of the same subproblems present themselves multiple times and solutions to these
subproblems can be used to solve the problem. As a result, rather than solve a
subproblem each time it presents itself, we can solve the subproblem once and remember
the solution by storing it in a table. Then, if the subproblem presents itself again, rather

 4

than re-compute the solution we can simply look the solution up in the table, thereby
saving ourselves the costs of re-computation.

To formalize the approach for how the optimal alignment of two sequences can be
computed, we introduce some notation. Let refer to the subsequencejis ,

1 of sequence s
from the character at index i to the character at index j, inclusive. For example, is s refers
to the sequence ACGTGA, consisting of n=6 characters, then corresponds to the
subsequence CGT consisting of 3 characters, corresponds to the subsequence A
consisting of 1 character, and corresponds to the subsequence ACGTGA consisting of 6

characters. Also, let

4,2s

1,1s

ns ,1

ts ⋅ refer to the optimal alignment score for two sequences s and t.
Finally, let align(c, d) refer to the alignment score of two individual characters c and d.
For example, if matches have an alignment score of +5, mismatches have an alignment
score of -4, and gaps have an alignment score of -6, then align(G, G) would correspond to
+5, align(G, C) would correspond to -4, and both align(G, -) and align(-, G) would
correspond to -6.

It can be shown that the optimal alignment score ts ⋅ of two sequences, s and t,
can be calculated from three subproblems, i.e., from the optimal alignment scores of
aligning three pairs of subsequences from s and t [12]. Specifically, for two sequences s
and t with lengths m and n, respectively, the optimal alignment score for the two
sequences can be calculated as

⎪
⎩

⎪
⎨

⎧

+⋅
−+⋅

−+⋅
=⋅

−−

−

−

),(
),(
),(

max

,,1,11,1

,1,1,1

,,11,1

nnmmnm

nnnm

mmnm

tsalignts
talignts

salignts
ts . (1)

 Figure 4 illustrates how the optimal pairwise alignment score can be computed for
two example sequences, s=AGCGTTA and t=ACGTGA. As Figure 4a depicts, the optimal
score for aligning AGCGTTA and ACGTGA is the largest of three quantities: (1) the optimal
score for aligning AGCGTT and ACGTGA summed with the score of aligning A, the last
character of AGCGTTA, with a gap, (2) the optimal score for aligning AGCGTTA and ACGTG
summed with the score of aligning a gap with A, the last character of ACGTGA, or (3) the
optimal score for aligning AGCGTT and ACGTG summed with the score of aligning A, the
last character of AGCGTTA, with A, the last character of ACGTGA.
 We haven’t yet described how to compute each of the three quantities, namely the
optimal score of aligning AGCGTT and ACGTGA, the optimal score of aligning AGCGTTA and
ACGTG, and the optimal score of aligning AGCGTT and ACGTG. However, suppose that we
somehow learned the answers, namely that the optimal score of aligning AGCGTT and
ACGTGA is 4, the optimal score of aligning AGCGTTA and ACGTG is 4, and the optimal score
of aligning AGCGTT and ACGTG is 10. If we assume that matched pairs of characters have

1 We use the term subsequence to mean a consecutive ordered subset of characters in a sequence. In
contrast, the term subsequence is sometimes defined as an ordered subset of characters in a sequence,
where the characters are not necessarily consecutive. By our definition, ACG is a subsequence of ACGTGA
but AG is not a subsequence of ACGTGA.

 5

AGCGTTA
ACGTGA

AGCGTT A
ACGTGA -

AGCGTT A
ACGTG A

AGCGTTA -
ACGTG A

+ + +

(a)

AGCGTTA
ACGTGA

AGCGTT A
ACGTGA -

AGCGTT A
ACGTG A

AGCGTTA -
ACGTG A

+ + +

AGCGTTA -
ACGT G

AGCGTT A
ACGT G

AGCGTT A
ACGTG -

AGCGTT -
ACGTG A

AGCGT T
ACGTG A

AGCGT T
ACGTGA -

AGCGTT -
ACGT G

AGCGT T
ACGT G

AGCGT T
ACGTG -

+ + + + + + + + +

* *# # &&

(c)

Figure 4. The figure illustrates the steps involved in calculating the optimal alignment score of
sequences AGCGTTA and ACGTGA. (a) The optimal alignment score of the two sequences is
equal to the maximum of three values, each of which is a sum of two terms. (b) Assuming a
match score of +5, a mismatch score of -4, and a gap score of -6, the optimal alignment score of
the two sequences is equal to the maximum of three values, 4+(-6), 4+(-6), and 10+(+5). Thus,
the optimal alignment score is equal to 15. (c) The optimal alignment score of the two sequences
can be decomposed into three subproblems, each of which in turn can be decomposed into three
subproblems. The two subproblems of subproblems marked with an asterisk, *, are similar, the
two marked with a pound sign, #, are similar, and the two marked with an ampersand, &, are
similar.

AGCGTTA
ACGTGA

AGCGTT A
ACGTGA -

AGCGTT A
ACGTG A

AGCGTTA -
ACGTG A

AGCGTT- A
| |||
A-CGTGA -

AGCGTTA -
| |||
A-CGTG- A

AGCGTT A
| ||| |
A-CGTG A

+ +

++ +

+

4 -6 4 -6 10 +5

(b)

 6

an alignment score of +5, mismatched pairs of characters have an alignment score of -4,
and characters aligned with a gap have an alignment score of -6, then as Figure 4b depicts,
the optimal score for aligning AGCGTTA and ACGTGA is the largest of three quantities: (1)
the optimal score for aligning AGCGTT and ACGTGA, which is 4, summed with the score of
aligning A, the last character of AGCGTTA, with a gap, which is -6 (2) the optimal score for
aligning AGCGTTA and ACGTG, which is 4, summed with the score of aligning a gap with A,
the last character of ACGTGA, which is -6, or (3) the optimal score for aligning AGCGTT and
ACGTG, which is 10, summed with the score of aligning A, the last character of AGCGTTA,
with A, the last character of ACGTGA, which is +5. The largest of these three quantities,
namely 4 + (-6), 4 + (-6), and 10 + (+5), is 15. Thus, given our assumptions, the optimal
alignment score of the two sequences is 15.
 Notice, we have decomposed the problem of calculating the optimal alignment
score of two sequences into three subproblems. Each of the three subproblems also
involves calculating the optimal alignment score for a pair of sequences. However, the
subproblems are smaller than the original problem in the sense that one or both sequences
in the subproblems are one character shorter than the sequences in the original problem.
While we have not proved that the optimal alignment score for two sequences can be
calculated from the solutions of three subproblems [12], such a proof is beyond the scope
of this article, we are relying on this fact and illustrating its application.
 The astute reader will notice that we have not yet described how the three
subproblems may be solved. But, of course, the subproblems involve computing the
optimal pairwise alignment score for two sequences, just as the original problem did, so
the subproblems can be solved by the same approach. Each of the three subproblems can,
itself, be solved by solving three subproblems of the subproblems, as shown in Figure 4c.
And each of the subproblems’ subproblems can be solved by decomposing the problem
into three further subproblems. Each time we generate a new subproblem, one or both of
the sequences involved is one character smaller than it was previously. If we keep
decomposing a problem into subproblems involving smaller and smaller sequences,
eventually we will be dealing with subproblems where one or both of the sequences
contain no characters. In such a case, we needn’t continue decomposing problems into
three subproblems, we can trivially compute the optimal alignment score for two
sequences if one or both of the sequences contains no characters.
 One might wonder whether characterizing the solution to a problem with three
subproblems, each of which in turn requires solving three subproblems, and so forth,
might generate a large number of subproblems needing solution. In general, the answer is
yes. For two sequences that are each several hundred characters in length, we could easily
generate an intractable number of subproblems requiring solution. Fortunately, as
suggested by the second property of the pairwise sequence alignment problem, many of
the subproblems overlap. As Figure 4c illustrates, many of the subproblems are identical
to other subproblems. If we solved a subproblem once, rather than re-solve it again,
assuming we have stored the solution in a table, we can look up the solution to the
subproblem in the table. The number of unique subproblems that require solution is, in
fact, tractable, so our table of subproblem solutions can be of manageable size.

 7

A C G T G A

A

G

C

G

T

T

[1][1]

A

[1][0] [1][2] [1][3] [1][4] [1][5] [1][6]

[0][1][0][0] [0][2] [0][3] [0][4] [0][5] [0][6]

[2][1][2][0] [2][2] [2][3] [2][4] [2][5] [2][6]

[3][1][3][0] [3][2] [3][3] [3][4] [3][5] [3][6]

[4][1][4][0] [4][2] [4][3] [4][4] [4][5] [4][6]

[5][1][5][0] [5][2] [5][3] [5][4] [5][5] [5][6]

[6][1][6][0] [6][2] [6][3] [6][4] [6][5] [6][6]

[7][1][7][0] [7][2] [7][3] [7][4] [7][5] [7][6]

(a) A C G T G A
0 -6 -12 -18 -24 -30 -36

A 5 -1 -7 -13 -19 -25-6

G -1 1 4 -2-12

C -18

G -24

T -30

T -36

[1][1]

A -42

[1][0] [1][2] [1][3] [1][4] [1][5] [1][6]

[0][1][0][0] [0][2] [0][3] [0][4] [0][5] [0][6]

[2][1][2][0] [2][2] [2][3] [2][4] [2][5] [2][6]

[3][1][3][0] [3][2] [3][3] [3][4] [3][5] [3][6]

[4][1][4][0] [4][2] [4][3] [4][4] [4][5] [4][6]

[5][1][5][0] [5][2] [5][3] [5][4] [5][5] [5][6]

[6][1][6][0] [6][2] [6][3] [6][4] [6][5] [6][6]

[7][1][7][0] [7][2] [7][3] [7][4] [7][5] [7][6]

(b) A C G T G A
0 -6 -12 -18 -24 -30 -36

A 5 -1 -7 -13 -19 -25-6

G -1 1 4 -2 -8 -14-12

C -7 4 -2 0 -6 -12-18

G -13 -2 9 3 5 -1-24

T -19 -8 3 14 8 2-30

T -25 -14 -3 8 10 4-36

[1][1]

A -31 -20 -9 2 4 15-42

[1][0] [1][2] [1][3] [1][4] [1][5] [1][6]

[0][1][0][0] [0][2] [0][3] [0][4] [0][5] [0][6]

[2][1][2][0] [2][2] [2][3] [2][4] [2][5] [2][6]

[3][1][3][0] [3][2] [3][3] [3][4] [3][5] [3][6]

[4][1][4][0] [4][2] [4][3] [4][4] [4][5] [4][6]

[5][1][5][0] [5][2] [5][3] [5][4] [5][5] [5][6]

[6][1][6][0] [6][2] [6][3] [6][4] [6][5] [6][6]

[7][1][7][0] [7][2] [7][3] [7][4] [7][5] [7][6]

(c)

Figure 5. Tables are depicted for the sequences s=AGCGTTA and t=ACGTGA. The row and
column index of each table entry are shown in square brackets in the bottom right corner of
each table entry to enable easy visual reference. Each entry in a table corresponds to the
optimal score for a particular subsequence of s aligned with a particular subsequence of t.
For the tables in the figure, a match score of +5, a mismatch score of -4, and a gap score of -
6 are assumed. (a) None of the entries in the table are filled in. (b) The table is partially
filled in. (c) The table is completely filled in.

Storing Solutions to Subproblems in a Table

Given two sequences s and t of lengths m and n, respectively, we will create a table, T,
consisting of m+1 rows and n+1 columns. Figure 5 illustrates such a table for the two
sequences s=AGCGTTA and t=ACGTGA. We will use the notation T[i][j] to refer to the entry
in the ith row and jth column of table T. Each entry in the table corresponds to the optimal
score for a particular subsequence of s aligned with a particular subsequence of t.
Specifically, T[i][j] corresponds to ji ts ,1,1 ⋅ . For example, for the table in Figure 5, T[3][5]
corresponds to the optimal score of aligning , which is the sequence AGC, with ,
which is the sequence ACGTG. Similarly, in Figure 5, T[7][1] corresponds to the optimal
score of aligning AGCGTTA with A, T[0][3] corresponds to the optimal score of aligning an
empty sequence with ACG, i.e., aligning three gaps with ACG, and T[7][6] corresponds to
the optimal score of aligning AGCGGTA with ACGTGA. Thus, if our goal is to calculate the
optimal alignment score for s and t, we need only determine the table entry T[m][n].
However, as we will see, computing T[m][n] requires first computing values for all other
entries in the table.

3,1s 5,1t

Populating the Table

As Figure 4 illustrates, the optimal score of aligning AGCGTTA with ACGTGA can be
expressed as a function of the optimal scores of aligning AGCGTT with ACGTGA, aligning
AGCGTTA with ACGTG, and aligning AGCGTT with ACGTG. Using our table notation and our
example in Figure 5, the optimal score of aligning AGCGTTA with ACGTGA, which is
T[7][6], can be expressed as a function of T[6][6], T[7][5], and T[6][5]. Reformulating
expression (1) using our table notation, we have

 8

⎪
⎩

⎪
⎨

⎧

+
−+

−+
=

),(]5][6[
),(]5][7[
),(]6][6[

max]6][7[

6,67,7

6,6

7,7

tsalignT
talignT

salignT
T (2)

and more generally

⎪
⎩

⎪
⎨

⎧

+−−
−+−

−+−
=

),(]1][1[
),(]1][[
),(]][1[

max]][[

,,

,

,

jjii

jj

ii

tsalignjiT
talignjiT

salignjiT
jiT . (3)

Expression (3) suggests that any entry in a table can be calculated as a function of three
other table entries, namely the table entry above, to the left, and diagonally above and left
of the entry to be filled in. For instance, in Figure 5b, T[2][4] is filled in with the score -2
because -2 is the maximum of the following three quantities, (1) T[1][4] plus the score of
aligning G with a gap, which is -6, (2) T[2][3] plus the score of aligning T with a gap,
which is -6, and (3) T[1][3] plus the score of aligning G with T, which is -4.
 To fill in a table completely, we begin by filling in the first row and column of the
table. Since each table entry in the first row and first column corresponds to the optimal
score of aligning some sequence with an empty sequence, the optimal score of the
alignment can be calculated as the score of aligning characters in one sequence with the
appropriate number of gaps. For example, filling in table entry T[5][0] using the
sequences in Figure 5 corresponds to the optimal score of aligning AGCGT with an empty
sequence, which corresponds to aligning AGCGT with 5 gaps, and if each gap alignment
contributes -6, then the optimal alignment score is -30. Once the first row and first
column of the table are filled in, we proceed from left to right across each row, starting at
row 1 and ending at row m, filling in each table entry based on expression (3). Our
approach can be expressed in pseudocode as follows

// Assumes the first row and column of the table have been filled in
Repeat for each row i = 1 to m

 Repeat for each column j = 1 to n
 T[i][j] = max(T[i-1][j] + align(si,i, -),
 T[i][j-1] + align(-, tj,j),
 T[i-1][j-1] + align(si,i, tj,j))

Once the table has been completely filled in, the optimal score for aligning sequences s
and t in their entirety can be found at table entry T[m][n].
 Notice that the use of a table to calculate the optimal alignment score for two
sequences is effective precisely because the alignment problem has two properties,
namely the solution to the problem can be expressed as a function of solutions to
subproblems and the subproblems overlap. The first property suggests that earlier entries
in the table can be used to calculate later entries. The second property suggests that it is
worth storing solutions to subproblems to avoid re-computation since the subproblem
solutions may be used multiple times. Rather than compute solutions to more than 2n+m

 9

A C G T G A
0 -6 -12 -18 -24 -30 -36

A 5 -1 -7 -13 -19 -25-6

G -1 1 4 -2 -8 -14-12

C -7 4 -2 0 -6 -12-18

G -13 -2 9 3 5 -1-24

T -19 -8 3 14 8 2-30

T -25 -14 -3 8 10 4-36

[1][1]

A -31 -20 -9 2 4 15-42

[1][0] [1][2] [1][3] [1][4] [1][5] [1][6]

[0][1][0][0] [0][2] [0][3] [0][4] [0][5] [0][6]

[2][1][2][0] [2][2] [2][3] [2][4] [2][5] [2][6]

[3][1][3][0] [3][2] [3][3] [3][4] [3][5] [3][6]

[4][1][4][0] [4][2] [4][3] [4][4] [4][5] [4][6]

[5][1][5][0] [5][2] [5][3] [5][4] [5][5] [5][6]

[6][1][6][0] [6][2] [6][3] [6][4] [6][5] [6][6]

[7][1][7][0] [7][2] [7][3] [7][4] [7][5] [7][6]

[6][0][6][0] [6][2] [6][3] [6][4] [6][4] [6][5]

[5][1][5][0] [5][2] [5][3] [5][3] [5][4] [5][5]

[3][1][4][0] [4][2] [4][3] [4][3] [5][4] [5][5]

[3][1][3][0] [3][2] [3][2] [4][3] [3][4] [4][5]

[2][1][2][0] [2][1] [2][3] [2][3] [2][4] [2][4]

[1][1][1][0] [1][1] [1][2] [2][3] [2][4] [2][5]

[0][0][0][0] [1][1] [1][2] [1][3] [1][4] [1][5]

[0][0][-1][-1] [0][1] [0][2] [0][3] [0][4] [0][5]Figure 6. A table is depicted for the
sequences s=AGCGTTA and t=ACGTGA. The
row and column index of each table entry are
shown in square brackets in the bottom right
corner of each table entry to enable easy visual
reference. Each entry in the table corresponds
to the optimal score for a particular
subsequence of s aligned with a particular
subsequence of t, assuming a match score of
+5, a mismatch score of -4, and a gap score of
-6. In the top left corner of each table entry,
the indicated row index and column index
represent the subproblem from which the
optimal score was calculated for that table
entry.

non-unique subproblems, we need only compute solutions to (n+1)*(m+1) unique
subproblems.
 The pairwise alignment problem is not the only problem that exhibits the
abovementioned two properties. Many problems have these two properties and can be
solved using the technique of dynamic programming. Dynamic programming is the
problem solving approach of creating a table with solutions to subproblems, and using the
solutions to subproblems to solve larger problems [11]. Another problem that is often
addressed using dynamic programming is the problem of calculating an energetically
favorable secondary structure for a given RNA sequence [13, 14].

Alignment

While we have described how to compute the optimal pairwise alignment score for two
sequences, we have not yet discussed how to compute the pairwise alignment associated
with an optimal score. Fortunately, the table that is constructed to calculate an optimal
alignment score can also be used to calculate an alignment associated with the optimal
score. By backtracking through the table, we can construct an alignment, starting at the
end of the alignment and progressing toward the beginning of the alignment. First, we
modify our approach for filling in a table so that each table entry keeps track not only of
an optimal score for a subproblem but also how that score was determined, i.e., which of
the three possible subproblems yielded the maximum value. Figure 6 shows an example
table filled in with both optimal scores and, in the top left corner of the table entries, an
indicator of which of three subproblems yielded the maximum value. For example, in
Figure 6, table entry T[3][2] shows an optimal alignment score of 4, and the index [2][1]
in the top left corner of the table entry indicates that the optimal score of 4 was calculated
as the sum of T[2][1] and the score of aligning the appropriate pair of characters, align(C,
C). Similarly, for table entry T[6][2], the optimal score of -14 was calculated based on the
value at index [5][2] in the table. For some table entries, more than one subproblem could
lead to an optimal score, i.e., when computing the maximum of three values, more than
one of the three values could achieve the maximum. For instance, the score of -6 in table

 10

entry T[3][5] in Figure 6 could have been achieved either from T[3][4]+align(-, G)=-6 or
from T[2][4]+align(C, G)=-6. The top left corner of the table entry was filled in arbitrarily
with [2][4] rather than [3][4]. Such a situation represents a scenario where two sequences
can be aligned in different ways with each achieving an optimal score.
 To determine an alignment once a table has been filled in, we begin at the last
table entry T[m][n] and proceed to earlier table entries based on the indices in the top left
corners of the table entries until we reach T[0][0]. Figure 7 illustrates the construction of
an alignment based on a filled in table. In the figure, T[7][6] is derived from T[6][5] and
aligning A with A, which is shown in the first of seven alignments in Figure 7b. T[6][5],
in turn, is derived from T[5][4] and aligning G with T, which is shown in the second of
seven alignments in Figure 7b. T[5][4] is derived from T[4][3] and aligning T with T,
T[4][3] is derived from T[3][2] and aligning G with G, T[3][2] is derived from T[2][1] and
aligning C with C, T[2][1] is derived from T[1][1] and aligning G with a gap, and T[1][1]
is derived from T[0][0] and aligning A with A. The growing alignment is shown in Figure
7b after each of the seven backtracking steps.

Local Pairwise Sequence Alignment

Thus far, we have concentrated on global alignments. Global alignments align the
entirety of the first sequence with the entirety of the second sequence. Figure 8a depicts
the optimal global alignment for the two homologous pbx1 sequences shown in Figure 1.
More common than computation of global alignments is computation of local alignments.
In fact, computation of local alignments is a core component of the popular BLAST tool
[15]. Indeed, the name BLAST is an acronym for Basic Local Alignment Search Tool
(emphasis added). Local alignments allow for the identification of subregions, domains,
and motifs that may be similar within two sequences.

Local alignments align a subsequence of one sequence with a subsequence of a
second sequence. The local alignment problem is the problem of finding the optimal

Figure 7. A filled-in table is
depicted for the sequences
s=AGCGTTA and t=ACGTGA.
(a) Arrows in the table
indicate a backtracking path
from the last table entry,
T[7][6], to the first, T[0][0],
based on the indices in the
top left corner of table
entries. Each arrow
represents a single
backtracking step. (b) With
each of the seven
backtracking steps, a pair of
characters is added to the
alignment, starting at the end
of the alignment and working
toward the beginning.

A C G T G A
0 -6 -12 -18 -24 -30 -36

A -6

G

5 -1 -7 -13 -19 -25

-1 1 4 -2 -8-12

C

-14

-7 4 -2 0 -6-18

G

-12

-13 -2 9 3 5-24

T

-1

-19 -8 3 14 8-30

T

2

-25-36

[1][1]

A

-14 -3 8 10 4

-31 -20 -9 2 4 15-42

[1][0] [1][2] [1][3] [1][4] [1][5] [1][6]

[0][1][0][0] [0][2] [0][3] [0][4] [0][5] [0][6]

[2][1][2][0] [2][2] [2][3] [2][4] [2][5] [2][6]

[3][1][3][0] [3][2] [3][3] [3][4] [3][5] [3][6]

[4][1][4][0] [4][2] [4][3] [4][4] [4][5] [4][6]

[5][1][5][0] [5][2] [5][3] [5][4] [5][5] [5][6]

[6][1][6][0] [6][2] [6][3] [6][4] [6][5] [6][6]

[7][1][7][0] [7][2] [7][3] [7][4] [7][5] [7][6]

[6][0][6][0] [6][2] [6][3] [6][4] [6][4] [6][5]

[5][1][5][0] [5][2] [5][3] [5][3] [5][4] [5][5]

[3][1][4][0] [4][2] [4][3] [4][3] [5][4] [5][5]

[3][1][3][0] [3][2] [3][2] [4][3] [3][4] [4][5]

[2][1][2][0] [2][1] [2][3] [2][3] [2][4] [2][4]

[1][1][1][0] [1][1] [1][2] [2][3] [2][4] [2][5]

[0][0][0][0] [1][1] [1][2] [1][3] [1][4] [1][5]

[0][0][-1][-1] [0][1] [0][2] [0][3] [0][4] [0][5]

AGCGTTA
| ||| |
A-CGTGA

GCGTTA
||| |
-CGTGA

CGTTA
||| |
CGTGA

GTTA
|| |
GTGA

TTA
| |
TGA

TA
|
GA

A
|
A(a) (b)

 11

Figure 8. Alignments for two sequences,
s and t, are shown, assuming a match
score of +5, a mismatch score of -4, and a
gap score of -6. (a) The optimal global
alignment for s and t is shown. The
optimal global alignment has a score of
60. (b) The optimal local alignment for s
and t is shown. The optimal local
alignment has a score of 105.

s AGTTTTGAGTATCCGAGGAGCCCAGGAGGAGGAACCCACAGACCCCCAGCTG

t GCCACTTGCCTAATGTCCGAGGAGACCAGGACGGAGGAACTTGATCCCGGACGTG

---AGTTTTGAGT-A--TCCGAGGAGCCCAGGA-GGAGGAACCCACAGA-CCCCCAG-C-TG
| || | | | ||||||||| |||||| |||||||| || | || | | ||

GCCA-CTT-GCCTAATGTCCGAGGAGACCAGGACGGAGGAAC---TTGATC--CCGGACGTG

Optimal Global Alignment Score: 60

TCCGAGGAGCCCAGGA-GGAGGAAC
||||||||| |||||| ||||||||
TCCGAGGAGACCAGGACGGAGGAAC

Optimal Local Alignment Score: 105

(a)

(b)

scoring alignment out of all possible alignments of any subsequence of one sequence
with any subsequence of the other sequence [16]. Intuitively, the local alignment problem
attempts to align subregions of sequences rather than complete sequences. Thus, a
solution to the local alignment problem can help identify domains of similarity between
sequences even if two sequences are not similar in their entirety. Figure 8b depicts the
optimal local alignment for the two homologous pbx1 sequences from Figure 1. The
highly conserved portion of pbx1 shown in the local alignment of Figure 8b corresponds
to a DNA binding region of the Pbx1 leukemia transcription factor [17]. Notice that the
optimal local alignment score for two sequences should always be greater than or equal to
the optimal global alignment score for two sequences since the optimal local alignment
score is optimal over all pairs of subsequences, including the sequences in their entirety.
 To compute the optimal local alignment score for two sequences, we could
enumerate all possible local alignments of the two sequences and determine the
alignment or alignments with highest score. However, as in the case of global alignments,
as a function of the lengths of the two sequences, there are exponentially many different
possible local alignments of two sequences. As a result, enumerating all possible local
alignments of two sequences would be computationally intractable for most sequences of
interest. Fortunately, like the global alignment problem, the local alignment problem has
the two properties that solutions to the problem can be determined from solutions to
subproblems and that subproblems are overlapping [16]. Thus, like our approach for
solving the global alignment problem, we can solve the local alignment problem by
filling in a table with solutions to subproblems using dynamic programming. For the local
alignment problem, filling in the table is similar to filling in the table for the global
alignment problem. The critical difference is that each table entry is computed as a
maximum of four values, as shown in equation (4), as opposed to the three values used in
equation (3) for global alignment.

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+−−
−+−

−+−

=

0
),(]1][1[

),(]1][[
),(]][1[

max]][[
,.

,

,

jjii

jj

ii

tsalignjiT
talignjiT

salignjiT

jiT .
(4)

For local alignment, the fourth value of zero in the maximum in equation (4) reflects the
fact that optimal local alignments cannot have a negative score. Any pair of subsequences
that yield a negative alignment score cannot be optimal because there is always a pair of
subsequences with a higher score, a score of zero, namely two empty sequences. When

 12

filling in an entry in the local alignment table, a lower, and hence suboptimal, score will
result from constructing an alignment from a negative scoring local alignment than from
constructing an alignment from a zero scoring alignment of two empty subsequences.

Figure 9 shows tables for computing the optimal local alignment score for two
example sequences. None of the table entries in Figure 9 are negative. In the local
alignment tables in Figure 9, unlike in the global alignment tables in Figure 5, the row
and column index of each table entry have not been included in the bottom right corner of
the table entry. However, to enable re-constructing an optimal alignment from the table
via backtracking, the row and column index in the top left corner of each entry have been
included to indicate the subproblem from which the optimal score was calculated for that
table entry. A score of zero with index [-1][-1] corresponds to an optimal local alignment
of two empty subsequences.

For global alignments, the optimal alignment score was in the bottom rightmost
table entry. For local alignments, the optimal alignment score is the maximum value in
the table, which could be at any of the entries in the table. In Figure 9, for example, the
maximum value in the table and, hence, the optimal local alignment score is 14, which is
found at table entry [6][5]. Once the table has been populated and the optimal local
alignment score has been determined, by backtracking through the table we can construct
a local alignment. To determine an alignment once a table has been filled in, we begin at
the table entry with the optimal score and proceed to earlier table entries based on the
indices in the top left corners of the table entries until we reach a table entry with a value
of 0. Figure 10 illustrates the construction of an alignment based on a filled in table. The
growing alignment is shown in Figure 10b after each of the five backtracking steps.

C G A C A G(a) C G A C A G

A

G

A

T

C

A

C

0 0 0 0 0 0 0

A 0 0 5 0 5 00

G 0 5 0 10

A 0

T 0

C 0

A 0

C 0

[1][1] [1][3]

[0][4]

[-1][-1]

(b)
[-1][-1] [-1][-1] [-1][-1] [-1][-1] [-1][-1] [-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1] [-1][-1]

[-1][-1]

[-1][-1][0][2][-1][-1]

[-1][-1]

[-1][-1]

C G A C A G
0 0 0 0 0 0 0

A 0

G

0 0 5 0 5 0

0

A

0 5 0 1 0 10

0

T

0 0 10 4 6 4

0

C

0 0 4 6 0 2

0

A

5 0 0 9 3 0

0

C

0 0 5 3 14 8

5 0 0 10 8 100
[6][3] [6][5] [6][5]

[5][4] [5][4] [6][5]

[4][0] [4][3] [5][4]

[3][3] [3][3]

[2][2] [3][3] [2][6]

[1][1] [1][3] [1][5]

[0][4]

[-1][-1]

(c)
[-1][-1] [-1][-1] [-1][-1] [-1][-1] [-1][-1] [-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1] [-1][-1]

[-1][-1]

[-1][-1]

[-1][-1] [-1][-1] [-1][-1]

[-1][-1]

[-1][-1] [-1][-1]

[-1][-1] [-1][-1]

[-1][-1][0][2][-1][-1]

[-1][-1] [-1][-1]

[-1][-1] [2][4]

[3][5]

[-1][-1] [-1][-1]

[5][2]

[6][0]

Figure 9. Tables are depicted for the sequences s=AGATCAC and t=CGACAG. Each entry in
a table corresponds to the optimal score for a particular subsequence of s locally aligned
with a particular subsequence of t. For the tables in the figure, a match score of +5, a
mismatch score of -4, and a gap score of -6 are assumed. (a) None of the entries in the table
are filled in. (b) The table is partially filled in. (c) The table is completely filled in. In the
top left corner of each table entry, the indicated row index and column index represent the
subproblem from which the optimal score was calculated for that table entry.

 13

Figure 10. A filled-in local
alignment table is depicted for
the sequences s=AGATCAC
and t=CGACAG. (a) Arrows in
the table indicate a

Affine Gap Scoring

As two homologous sequences diverge over time, portions of either sequence may be
excised or portions of new sequences may be spliced in. The gaps in our pairwise
sequence alignment model are meant to reflect these evolutionary deletion and insertion
events. All of the examples above have employed a linear gap score, which is to say that
all gaps in an alignment have contributed the same amount, e.g., c = -6, to the alignment
score. Thus, in the above examples, excising (or splicing) a region of seven nucleotides is
seven times more costly than excising (or splicing) a single nucleotide. However, for a
cell, the act of excising (or splicing) a portion of DNA may be costly, but the length of
the portion excised (or spliced) may be less important to the cell. Ideally, our pairwise
sequence alignment model should account for the different costs associated with an
excision (or splice) event and the length of the region excised (or spliced). As an
alternative to the linear gap score, an affine gap score allows for different gaps
contributing different amounts to the alignment score. A common affine gap scoring
model is to have the first gap in a series of consecutive gaps contribute one score, α, and
each subsequent gap in the same series of consecutive gaps contributes a different score,
β. If gaps represent insertion/deletion events between related biological sequences, an
affine gap scoring model is meant to reflect the relatively greater cost of the existence of
a gap as compared to the extension of a gap. In affine gap scoring, typically, the existence
of a gap is represented by the first character in a series of gaps and is somewhat more
costly, α, whereas increasing the length of the gap is somewhat less costly, β. Figure 11
illustrates a sample alignment using both a linear gap scoring model and an affine gap
scoring model. Empirical evidence suggests that an affine gap scoring system may better
capture the relationships between biological sequences than a linear gap scoring model
[4].

backtracking path from the
maximum table entry, T[6][5],
to an entry with value 0, based
on the indices in the top left
corner of table entries. Each
arrow represents a single
backtracking step. (b) With
each of the five backtracking
steps, a pair of characters is
added to the alignment,
starting at the end of the
alignment and working toward
the beginning.

C G A C A G
0 0 0 0 0 0 0

A 0

G

0 0 5 0 5 0

0 5 0 1 0 100

A 0 0 10 4 6 40

T 0 0 4 6 0 20

C 5 0 0 9 3 00

A 0 0 5 3 14 80

C 5 0 0 10 8 100
[6][3] [6][5] [6][5]

[5][4] [5][4] [6][5]

[4][0] [4][3] [5][4]

[3][3] [3][3]

[2][2] [3][3] [2][6]

[1][1] [1][3] [1][5]

[0][4]

[-1][-1]

GATCA
|| ||
GA-CA

ATCA
| ||
A-CA

TCA
||
-CA

CA
||
CA

A
|
A

(a) (b)
[-1][-1] [-1][-1] [-1][-1] [-1][-1] [-1][-1] [-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1]

[-1][-1] [-1][-1]

[-1][-1]

[-1][-1]

[-1][-1] [-1][-1] [-1][-1]

[-1][-1]

[-1][-1] [-1][-1]

[-1][-1] [-1][-1]

[-1][-1][0][2][-1][-1]

[-1][-1] [-1][-1]

[-1][-1] [2][4]

[3][5]

[-1][-1] [-1][-1]

[5][2]

[6][0]

 14

AGGCTACGATCGATCGAGTT
| || | ||| || |||
A-GCCA---TCG-TC--GTT

c c c c c c c

(a)

AGGCTACGATCGATCGAGTT
| || | ||| || |||
A-GCCA---TCG-TC--GTT

α α β β α α β

(b)

Figure 11. Two identical alignments are shown. (a) Assuming a match score of +5, a
mismatch score of -4, and a linear gap score of c=-6, the alignment has a score of 14. (b)
Assuming a match score of +5, a mismatch score of -4, and an affine gap scoring model
with a gap opening score of α=-7 and a gap extension score of β=-2, the alignment has a
score of 22.

Alternative Scoring Models

Just as affine gap scoring offers a more flexible and realistic scoring model than linear
gap scoring, so too can we extend our scoring model for pairs of matched and
mismatched characters in an alignment. All of the examples above have employed a fixed
score for all pairs of aligned matching characters and a fixed score for all pairs of aligned
mismatching characters. In the case of DNA sequences composed of the 4 DNA
nucleotides, we can construct a scoring matrix of all 16 possible pairs of characters and
the alignment score for each pair. As Figure 12a illustrates, using a fixed score for
matches and a fixed score for mismatches, the 4 pairs of matching characters, A|A, C|C, G|G,
and T|T, all have the same score and the 12 pairs of mismatching characters, A|C, A|G, A|T,
C|A, C|G, C|T, G|A, G|C, G|T, T|A, T|C, and T|G, all have the same score. Alternatively, we
could assign different scores to different matches or different mismatches, with the aim of
better representing various properties of the sequences that we are modeling [18]. For
example, for DNA sequences, an adenine aligned with a guanine might contribute a less
negative score to an alignment than an adenine aligned with cytosine, under the
assumption that replacing one purine with another should penalize an alignment less than
replacing a purine with a pyrimidine. Figure 12b illustrates a scoring model where not all
pairs of mismatched characters contribute the same score, rather purines mismatched with
pyrimidines contribute -4 whereas purines mismatched with other purines contribute -1

A C G T

A 5 -4 -4 -4

C -4 5 -4 -4

G -4 -4 5 -4

T -4 -4 -4 5

A C G T

A 5 -4 -1 -4

C -4 5 -4 -1

G -1 -4 5 -4

T -4 -1 -4 5

(a) (b)Figure 12. Two different scoring
matrices are shown reflecting two
different sets of possible match and
mismatch alignment scores for the 16
pairs of DNA nucleotides. (a) All
matches contribute a score of 5. All
mismatches contribute a score of -4. (b)
All matches contribute a score of 5. A
purine mismatched with a pyrimidine
contributes a score of -4 whereas a purine
mismatched with another purine or a
pyrimidine mismatched with another
pyrimidine contributes a score of -1.

 15

and pyrimidines mismatched with other pyrimidines contribute -1. For protein sequences,
the cost of replacing one amino acid with another should depend on the properties of the
amino acids. A scoring matrix for protein sequences should have 20 rows and 20 columns
to reflect the 20 amino acids. BLOSUM [19] and PAM [20] matrices are commonly used
as scoring matrices when aligning protein sequences. As a frame of reference, when
comparing nucleotide sequences, the BLAST program employs a match score of +1, a
mismatch score of -3, and affine gap scoring with a gap opening score of -5 and gap
extension score of -2 with one of its default settings [21, 22]. When comparing protein
sequences, the BLAST program employs the BLOSUM62 scoring matrix and affine gap
scoring with a gap opening score of -11 and gap extension score of -1 with one of its
default settings [21, 22].

While many different scoring models are reasonable for aligning pairs of
sequences, one desirable property of scoring models is that the expected score of random
sequences is negative [23]. Why? Intuitively, two sequences independently generated at
random do not have a relationship and should not be deemed similar, i.e., they should
have a negative global alignment score. For local alignments, random and unrelated
portions of two sequences preferably should not contribute positively toward the optimal
alignment score since one of the goals of local pairwise alignment is to distinguish
similar portions of two sequences from dissimilar or unrelated portions of two sequences.
Practically, if the expected score of random sequences were positive, longer local
alignments would be advantaged over shorter local alignments and optimal local
alignments would approximate optimal global alignments, rather than distinguish similar
subsequences.

Significance of an Optimal Alignment

Thus far, we have investigated how to compute an optimal alignment score and an
optimal alignment of two sequences. But we have not broached the topic of whether an
optimal alignment is meaningful, i.e., whether an optimal alignment is suggestive that
two sequences are similar and likely to have a relationship. If we know that the optimal
alignment score for two sequences is 60, can we say with confidence that the two
sequences are similar? What if the two sequences have an optimal alignment score of 600
or 6000? The answer, of course, is “it depends”. Whether an alignment score is
significant depends on such factors as the length of the sequences, the distribution of
characters in the sequences, and the scoring model. For example, for two sequences of
100 characters, an alignment score of 490 might be significant if matched pairs of
characters received a score of +1 and mismatched pairs of characters received a score of -
1. However, an alignment score of 490 might not be significant for the same two
sequences if matched pairs of characters received a score of 200 and mismatched pairs of
characters received a score of -5.
 In order to assess the significance of an alignment score, often randomized data is
used to estimate how likely it is that such an alignment score would occur merely by
chance [23]. The underlying assumption here is that the optimal alignment score for two
similar or related sequences should have a higher probability of being larger than the
optimal alignment score for two random or unrelated sequences. The biological
motivation for this assumption is that random mutations are more likely to be deleterious

 16

0

100

200

300

400

500

600

700

3 6 9 1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

5
1

5
4

5
7

6
0

6
3

6
6

6
9

7
2

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

Alignment Score

#
 o

f
A

li
g

n
m

e
n
ts

Figure 13. A histogram of 10,000
optimal alignment scores for 10,000 pairs
of randomly generated sequences. Each
sequence in each pair of randomly
generated sequences is 50 characters in
length and has an expected GC content of
50%. Of the 10,000 alignment scores, 631
or 6.31% have a score of 60 or higher.

to related pairs of sequences than to random or unrelated pairs of sequences and, thus,
less likely to be preserved owing to selective evolutionary pressure [24].
 One computational approach that uses randomized data to estimate the
significance of an alignment score of two sequences, s and t, proceeds as follows. A large
number, say 10,000, of pairs of random sequences are generated. Each pair of random
sequences should be similar to the original pair of sequences, s and t, in that the two
sequences in the random pair should have the same lengths as s and t. Further, the
distribution of characters in each random pair should approximate the distribution of
characters in s and t. For instance, if s has a GC content of 46% then so too should one of
the sequences in the random pair. A random sequence with such a distribution of
characters might be generated by randomly permuting the order of characters in s or by
generating a random sequence de novo with the expected distribution of characters. Then,
the optimal alignment score, either global or local depending on the application, can be
computed for each pair of random sequences. Figure 13 shows a histogram of 10,000
optimal alignment scores for 10,000 pairs of randomly generated sequences. As can be
seen from the histogram, almost all of the 10,000 alignment scores fall between 20 and
80. 6.31% of the 10,000 alignments achieved a score of 60 or greater. Thus, the original
sequences, s and t, had approximately a 6% chance of achieving an optimal alignment
score of 60 or greater merely be chance. The p-value of an optimal local alignment score,
S, for two sequences is the likelihood that two random sequences, of the same lengths and
compositions as the original sequences, would have an optimal local alignment score
greater than or equal to S. Thus, if the optimal local alignment score for s and t is S=60,
then the p-value for this alignment score is approximately p=0.06. A larger p-value
suggests that an alignment score has a higher likelihood of occurring merely by chance.
A smaller p-value suggests that an alignment score has a lower likelihood of occurring
merely by chance. Smaller p-values generally suggest higher significance, i.e., that an
alignment score is less likely to have occurred by chance and more likely to have
occurred as a result of some other factor such as selective evolutionary pressure.
 Generally, p-values rather than alignment scores are used to assess the statistical
significance of an alignment of two sequences. Alignment scores depend on the lengths
of the sequences being aligned and the distribution of characters in the sequences. An
alignment score of 60 may be significant for two sequences of length 30 characters but
not for two sequences of length 100 characters. In Figure 13, the histogram would shift to
the left for two sequences of length 30 characters and to the right for two sequences of
100 characters, assuming the same scoring model. Thus, without knowing such details

 17

about the sequences, the alignment score may be meaningless. Similarly, an alignment
score of 60 may be significant for one scoring model but not for another. p-values have
the advantage over alignment scores that they account for these different sequence
properties and scoring models. While there is no firm threshold for p-values, often as a
guide researchers consider p-values less than 0.01 to be significant.

Conclusions

Determining the similarity of two sequences is a fundamental problem in genomics. The
similarity of a pair of sequences may suggest a relationship between the sequences. Often,
when a scientist determines the nucleotide sequence of a previously uncharacterized
genomic region or the amino acid sequence of a previously uncharacterized protein, the
next step is comparison of the sequence to other sequences in order to identify possibly
related elements. Pairwise alignment indicates the similarity of two sequences. As
described in this article, the problem of computing the optimal pairwise alignment for
two sequences can be solved efficiently. Calculation of both the optimal global alignment
and the optimal local alignment of a pair of sequences was illustrated. Though the
examples in this article focused primarily on nucleotide sequences, the same approaches
are directly applicable to protein sequences.
 While this article deals specifically with the pairwise alignment problem, there are
a number of broader themes throughout the article that apply to other bioinformatics
problems. We conclude with explicit statement of some of the more important of these
themes.

• Experimental approaches often validate or refute hypotheses. Computational
approaches often suggest hypotheses and, in some cases, indicate levels of
confidence in the hypotheses. Computing the optimal pairwise alignment for two
sequences, for example, may indicate the similarity of the sequences, which can
suggest a relationship between the sequences, i.e., a hypothesis. Experimental and
computational approaches are not competing approaches for addressing the same
problem but rather are complimentary approaches in the application of the
scientific method.

• When computational approaches generate hypotheses, it is often useful if the
probabilities that the generated hypotheses are correct can be estimated. For many
problems, randomly generated data can be used to estimate the significance of an
observation, i.e., how likely the observation is to have occurred merely by chance.

• Some problems cannot be solved computationally. Some problems can be solved
computationally, but not efficiently. Some problems can be solved efficiently
computationally. It is not always obvious which of the abovementioned classes a
problem may fall into. Identifying various properties of a problem can be the
difference between finding a solution to the problem or not, and identifying such
properties often requires algorithmic insights.

• Some problems are solved exactly or optimally. Other problems are addressed
using a heuristic approach. Heuristic methods for solving a problem may not
solve a problem exactly or optimally, but they can generate good possibly
suboptimal solutions, and often they can do so very efficiently. The

 18

abovementioned solution to the pairwise alignment problem is not heuristic, it
provably generates an optimal solution. BLAST is a heuristic tool in that, for the
purposes of efficiency, it does not align a query sequence to every target sequence
in a large database, but rather aligns a query sequence to a subset of target
sequences in the database. Heuristically, BLAST identifies a subset of target
sequences in the database that are likely to be similar to the query sequence.
Heuristic approaches often offer a trade-off between sensitivity and efficiency.

• Many computational approaches are improved by incorporating additional
biological insights into their underlying method or model. In the case of the
pairwise alignment problem, an alignment is more meaningful if the scoring
matrix or model is well-founded biologically.

• Recent advances have enabled scientists to gather large amounts of, often
heterogeneous, data. One of the roles of many bioinformatics tools is efficient
analysis of large data sets with the aim of extracting new biological insights from
the wealth of data.

 19

References

1. Chang, C.P., W.F. Shen, S. Rozenfeld, H.J. Lawrence, C. Largman, and M.L.

Cleary, (1995). Pbx proteins display hexapeptide-dependent cooperative DNA
binding with a subset of Hox proteins. Genes and Development, 9: p. 663-674.

2. Lam, S.H., Y.L. Wu, V.B. Vega, L.D. Miller, J. Spitsbergen, Y. Tong, H. Zhan,
K.R. Govindarajan, S. Lee, S. Mathavan, K.R.K. Murthy, D.R. Buhler, E.T. Liu,
and Z. Gong, (2006). Conservation of gene expression signatures between
zebrafish and human liver tumors and tumor progression. Nature Biotechnology,
24(1): p. 73-75.

3. Thomas, J.W., J.W. Touchman, R.W. Blakesley, G.G. Bouffard, S.M. Beckstrom-
Sternberg, E.H. Margulies, M. Blanchette, A.C. Siepel, P.J. Thomas, J.C.
McDowell, B. Maskeri, N.F. Hansen, M.S. Schwartz, R.J. Weber, W.J. Kent, D.
Karolchik, T.C. Bruen, R. Bevan, D.J. Cutler, S. Schwartz, L. Elnitski, J.R. Idol,
A.B. Prasad, S.Q. Lee-Lin, V.V.B. Maduro, T.J. Summers, M.E. Portnoy, N.L.
Dietrich, N. Akhter, K. Ayele, B. Benjamin, K. Cariaga, C.P. Brinkley, S.Y.
Brooks, S. Granite, X. Guan, J. Gupta, P. Haghighi, S.L. Ho, M.C. Huang, E.
Karlins, P.L. Laric, R. Legaspi, M.J. Lim, Q.L. Maduro, C.A. Masiello, S.D.
Mastrian, J.C. McCloskey, R. Pearson, S. Stantripop, E.E. Tiongson, J.T. Tran, C.
Tsurgeon, J.L. Vogt, M.A. Walker, K.D. Wetherby, L.S. Wiggins, A.C. Young,
L.H. Zhang, K. Osoegawa, B. Zhu, B. Zhao, C.L. Shu, P.J. De Jong, C.E.
Lawrence, A.F. Smit, A. Chakravarti, D. Haussler, P. Green, W. Miller, and E.D.
Green, (2003). Comparative analyses of multi-species sequences from targeted
genomic regions. Nature, 424(6950): p. 788-793.

4. Vingron, M. and M.S. Waterman, (1994). Sequence alignment and penalty choice:
review of concepts, case studies and implications. Journal of Molecular Biology,
235(1): p. 1-12.

5. Gibbs, A.A. and G.A. McIntyre, (1970). The diagram: a method for comparing
sequences. Its use with amino acid and nucleotide sequences. European Journal of
Biochemistry, 16: p. 1-11.

6. Turing, A., (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42):
p. 230-265.

7. Cook, S.A., (1971). The complexity of theorem-proving procedures. Proceedings
of the third annual ACM Symposium on Theory of Computing: p. 151-158.

8. Wang, L. and T. Jiang, (1994). On the complexity of multiple sequence alignment.
Journal of Computational Biology, 1(4): p. 337-348.

9. Lawrence, C.E. and A.A. Reilly, (1990). An expectation maximization (EM)
algorithm for the identification and characterization of common sites in unaligned
biopolymer sequences. Proteins, 7(1): p. 41-51.

10. Eisen, M.B., P.T. Spellman, P.O. Brown, and D. Botstein, (1998). Cluster
analysis and display of genome-wide expression patterns. Proceedings of the
National Academy of Sciences of the United States of America, 95(25): p. 14863-
14868.

11. Bellman, R., (1952). On the theory of dynamic programming. Proceedings of the
National Academy of Sciences of the United States of America, 38: p. 716-719.

 20

12. Needleman, S.B. and C.D. Wunsch, (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3): p. 443-453.

13. Nussinov, R. and A.B. Jacobson, (1980). Fast algorithm for predicting the
secondary structure of single-stranded RNA. Proceedings of the National
Academy of Sciences of the United States of America, 77(11): p. 6309-6313.

14. Zuker, M. and P. Stiegler, (1981). Optimal computer folding of large RNA
sequences using thermodynamics and auxiliary information. Nucleic Acids
Research, 9(1): p. 133-148.

15. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, (1990). Basic
local alignment search tool. Journal of Molecular Biology, 215: p. 403-410.

16. Smith, T.F. and M.S. Waterman, (1981). Identification of common molecular
subsequences. Journal of Molecular Biology, 147: p. 195-197.

17. Piper, D.E., A.H. Batchelor, C.P. Chang, M.L. Cleary, and C. Wolberger, (1999).
Structure of a HoxB1-Pbx1 heterodimer bound to DNA: role of the hexapeptide
and a fourth homeodomain helix in complex formation. Cell, 96: p. 587-597.

18. Altschul, S.F., (1991). Amino acid substitution matrices from an information
theoretic perspective. Journal of Molecular Biology, 219: p. 555-565.

19. Henikoff, S. and J.G. Henikoff, (1992). Amino acid substitution matrices from
protein blocks. Proceedings of the National Academy of Sciences of the United
States of America, 89: p. 10915-10919.

20. Dayhoff, M.O., ed. A model of evolutionary change in proteins. Atlas of Protein
Sequence and Structure, ed. M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. Vol.
5. 1978, Natl. Biomed. Res. Found.: Washington, D.C.

21. States, D.J., W. Gish, and S.F. Altschul, (1991). Improved sensitivity of nucleic
acid database searches using application-specific scoring matrices. Methods,
3(66-70).

22. http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml#other_advanced.
23. Karlin, S. and S.F. Altschul, (1990). Methods for assessing the statistical

significance of molecular sequence features by using general scoring schemes.
Proceedings of the National Academy of Sciences of the United States of America,
87: p. 2264-2268.

24. Frazer, K.A., L. Elnitski, D.M. Church, I. Dubchak, and R.C. Hardison, (2003).
Cross-species sequence comparisons: a review of methods and available
resources. Genome Research, 13: p. 1-12.

 21

