Learning handwritten digits with a neural net
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“Deep” neural networks
early work extended simple neural networks to have multiple,
highly-connected hidden layers

if such networks could be trained, they would be much more
powerful than “shallow” neural nets

but generic multi-layer networks are extremely hard to train!!
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State-of-the-art recognition systems
are based on convolutional neural networks

Public databases of face images serve as benchmarks:

Labeled Faces in the Wild (LFW, http://vis-www.cs.umass.edu/lfw)
> 13,000 images of celebrities, 5,749 different identities

YouTube Faces Database (YTF http://www.cs.tauacil/~wolf/ytfaces)
3,425 videos, 1,595 different identities
Private face image datasets:

(Facebook) Social Face Classification dataset
4.4 million face photos, 4,030 different identities
(Google) 100-200 million face images, ~ 8 million different identities

LFW YTF False accept False reject .
Facebook DeepFace 97.4% 91.4%
Google FaceNet 99.6% 95.1%
Human performance 97.5% 89.7%

Convolutional Neural Networks (CNNs)

Fei-Fei Li, Justin Johnson, Serena Yeung (http://cs231n.stanford.edu/)

*This network is running live in your browser

The Convolutional Neural Network in this example is classifying images live in your browser using Javascript, at about 10
milliseconds per image. It takes an input image and transforms it through a series of functions into class probabilities at the end.
The transformed representations in this visualization can be losely thought of as the activations of the neurons along the way.
The parameters of this function are learned with backpropagation on a dataset of (image, label) pairs. This particular network is
classifying CIFAR-10 images into one of 10 classes and was trained with ConvNetJS. Its exact architecture is [conv-relu-conv-
relu-pool]x3-fc-softmax, for a total of 17 layers and 7000 parameters. It uses 3x3 convolutions and 2x2 pooling regions. By the
end of the class, you will know exactly what all these numbers mean.
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Sample stages of a CNN
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CONV: “convolution” layer with weights that are learned

RELU: “rectified linear unit” applies an activation function
POOL: “pooling” selects maximum value in small neighborhoods
FC: “fully-connected” neural network
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« early layers perform a convolution of their inputs

* multiple convolution operators (e.g. red & black)

* weights in convolution operators are learned

* convolution operators are typically small (e.g. 5x5)
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Adding a fully-connected neural net layer

Recognizing digits from the MNIST database with a CNN:
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LeNet

LeCun, Bottou, Bengio, Haffner (1998)

11/2/21



AlexNet, ZF Net, GoogLeNet, VGGNet, ResNet, ...
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AlexNet: Krizhevsky, Sutskever, Hinton (2012)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

ImageNet Object Localization Challenge
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Maximally activating images from some POOLS5 neurons of AlexNet (Girshick et al.,, 2014)
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Facebook’s DeepFace system
Taigman et al,, 2014

* detect face

» 2D align face in crop window
using 6 fiducial points

* align to 3D shape model using
67 fiducial points

* use 3D model + image to
generate frontal view
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Google’s FaceNet system

Schroff et al., 2015
FaceNet a!so uses a deep | DEEP ARCHITECTURE |&|L2|® | § |& Triplet
convolutional network : Loss
Batch <

* learns mapping from images to a space where
distance between images captures similarity

* training data: triplets of face thumbnails
o two same ID, one different ID

* learning process: minimize distance between
anchor & positive images (same ID), maximize
distance between anchor & negative images
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threshold = 1.1 classifies pairs correctly Positive
(smaller value means more similar)
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