Learning handwritten digits with a neural net

MNIST database: 3000 28x28 images of handwritten digits

Sample image:

- Start with random initial weights and use back-propagation to learn weights to recognize digits.
- One output unit for each digit.
- Select output unit with maximum response, e.g., 9.

State-of-the-art recognition systems are based on convolutional neural networks

Public databases of face images serve as benchmarks:
 - >13,000 images of celebrities, 5,749 different identities
 - 3,425 videos, 1,595 different identities

Private face image datasets:
- (Facebook) Social Face Classification dataset
 - 4.4 million face photos, 4,030 different identities
- (Google) 100-200 million face images, ~8 million different identities

<table>
<thead>
<tr>
<th></th>
<th>LFW</th>
<th>YTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook DeepFace</td>
<td>97.4%</td>
<td>91.4%</td>
</tr>
<tr>
<td>Google FaceNet</td>
<td>99.6%</td>
<td>95.1%</td>
</tr>
<tr>
<td>Human performance</td>
<td>97.5%</td>
<td>89.7%</td>
</tr>
</tbody>
</table>

“Deep” neural networks

- Early work extended simple neural networks to have multiple, highly-connected hidden layers.
- If such networks could be trained, they would be much more powerful than “shallow” neural nets.
- But generic multi-layer networks are extremely hard to train!!

Convolutional Neural Networks (CNNs)

Fei-Fei Li, Justin Johnson, Serena Yeung (http://cs231n.stanford.edu/)
Sample stages of a CNN

CONV: "convolution" layer with weights that are learned
RELU: "rectified linear unit" applies an activation function
POOL: "pooling" selects maximum value in small neighborhoods
FC: "fully-connected" neural network

ReLU & max pooling layers

Rectified Linear Activation

Convolutional layer

fully-connected network
locally-connected network

early layers perform a convolution of their inputs
multiple convolution operators (e.g. red & black)
weights in convolution operators are learned
convolution operators are typically small (e.g. 5x5)

Adding a fully-connected neural net layer

Recognizing digits from the MNIST database with a CNN:

LeNet

LeCun, Bottou, Bengio, Haffner (1998)
AlexNet, ZF Net, GoogLeNet, VGGNet, ResNet, ...

[Image of AlexNet architecture]

AlexNet: Krizhevsky, Sutskever, Hinton (2012)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Annually since 2010

Maximally activating images from some POOL5 neurons of AlexNet (Girshick et al., 2014)

Facebook’s DeepFace system

Taigman et al., 2014

- detect face
- 2D align face in crop window using 6 fiducial points
- align to 3D shape model using 67 fiducial points
- use 3D model + image to generate frontal view

Google’s FaceNet system

Schroff et al., 2015

FaceNet also uses a deep convolutional network

- learns mapping from images to a space where distance between images captures similarity
- training data: triplets of face thumbnails
 - two same ID, one different ID
- learning process: minimize distance between anchor & positive images (same ID), maximize distance between anchor & negative images

Threshold = 1.1 classifies pairs correctly (smaller value means more similar)