Human stereo acuity

Use features for stereo matching whose position and disparity can be measured very precisely.

Stereoacuity is only a few seconds of visual angle difference in depth ≈ 0.01 cm at a viewing distance of 30 cm.

Random-dot stereograms

- Bela Julesz, 1971
- stereo system can function independently
- we can match “simple” features
- highlight the *ambiguity* of the matching process

Properties of human stereo processing

Matching features must appear *similar* in the left and right images.

For example, a left stereo image cannot be *fused* with a negative of the right image.

Properties of human stereo processing

Only “fuse” objects within a limited range of depth around the fixation distance.

Vergence eye movements are needed to fuse objects over a larger range of depths.
Properties of human stereo vision

Human visual system can only tolerate small amounts of *vertical disparity* at a single eye position.

Vertical eye movements are needed to handle large vertical disparities.

Spatial frequency channels

In the early stages of visual processing, the image is analyzed at *multiple spatial scales* that play a critical role in stereo vision.

Multi-scale stereo processing

Add together: (like a hybrid image)
- coarse scale images with coherent stereo disparities
- fine scale images with uncorrelated “noise”

Outcome:
- can still fuse images
- tolerate large range of stereo disparity
- get a rough sense of depth

Multi-scale stereo processing

Add together: (like a hybrid image)
- coarse scale images with uncorrelated “noise”
- fine scale images with coherent stereo disparities

Outcome:
- can still fuse images
- only tolerate small range of stereo disparity
- more vergence eye movements
Some key points from perception...

- Image features used for matching:
 ~simple, precise locations, similar between left/right images
- At a single fixation, match features over a limited range of horizontal & vertical disparity
- Eye movements used to match features over larger range of horizontal & vertical disparity
- **Stereo matching is performed at multiple scales**
 - stereo information at different scales can be processed independently
 - information at coarser scales can be "fused" over a larger range of stereo disparity
 - information at coarser scales can trigger vergence eye movements that narrow the range of stereo disparity in the region of view

Projection from the retina

1st cortical stage of visual processing:

primary visual cortex (area V1)

combines input from both eyes

Neural processing of stereo disparity

Neural mechanisms for stereo processing

From Gian Poggio & others:

- neural recordings from monkey (area V1)
- viewing random-dot stereograms

zero disparity: at fixation distance
near: in front of fixation distance
far: behind fixation distance

* (some) simple & complex cells in **area V1** are **selective for stereo disparity**
* neurons with large receptive fields are selective for a larger range of disparity

... but the stereo correspondence problem is **not solved** in V1!!
Selectivity for *stereo boundaries* in V2

Von der Heydt & colleagues:
Some V2 cells are selective for the orientation, contrast, and *side of border ownership* of an edge for edges defined by *luminance or stereo disparity*

Later, in area V4, neural responses to stereo disparity appear to correspond more closely to perceived depth

“anti-correlated” stereogram