

Measuring motion in one dimension I(x) V_x = velocity in x direction ∂I/∂x • rightward movement: $V_x > 0$ • leftward movement: $V_x < 0$ ∂I/∂t • speed: | V_x | ∂I/∂t • pixels/time step ∂I/∂x

3

2

2-D velocities (V_x,V_y) consistent with \boldsymbol{v}^{\perp} All (V_x, V_y) such that the component of (V_x, V_y) in the direction of the gradient is **v**^{\(\)} (u_x, u_y) : unit vector in direction of gradient Use the *dot product:* $(V_x, V_y) \cdot (u_x, u_y) = v^{\perp}$ $V_x \mathbf{u}_x + V_y \mathbf{u}_y = \mathbf{v}^{\perp}$

Time-out exercise 7

Details... $\partial I/\partial x = 10$ $\partial I/\partial y = -10$ $\partial I/\partial t = -30$ \rightarrow (V_x, V_y) ?? ∂I/∂x = 10 For each component: ∂I/∂y = 10 $(1) u_x$ ∂I/∂t = -30 $(2) u_y$ 00 (3) v[⊥] solve for V_x , V_y (4) $V_x u_x + V_y u_y = v^{\perp}$ 8

6

Option 2: Smoothness assumption:

Compute a velocity field that:

- (1) is consistent with local measurements of image motion (perpendicular components)
- (2) has the *least amount of variation* possible

10

Find (V_{x_i}, V_{y_i}) that minimize:

$$\sum \bigl(V_{x_i} u_{x_i} + V_{y_i} u_{y_i} - v^{\perp}_{_i} \bigr)^2 + \lambda \bigl[\bigl(V_{x_{i+1}} \text{-} V_{x_i} \bigr)^2 + \bigl(V_{y_{i+1}} \text{-} V_{y_i} \bigr)^2 \bigr]$$

deviation from image motion measurements

+

variation in velocity field

11 12

Two-stage motion measurement

motion components \rightarrow 2D image motion

Movshon, Adelson, Gizzi & Newsome

V1: high % of cells selective for direction of motion (especially in layer that projects to MT)

MT: high % of cells selective for direction and speed of motion

lesions in MT → behavioral deficits in motion tasks

13

15

Logic behind the experiments

Component cells measure perpendicular components of motion

e.g. selective for vertical features moving right

predicted responses: (1) yes (2) yes

(3) no

Pattern cells integrate motion components

e.g. selective for rightward motion of pattern

predicted responses: (1) no

(3) yes

Testing with sine-wave "plaids"

Moving plaid demo: http://www.georgemather.com /MotionDemos/PlaidMP4.html

Movshon et al. recorded responses of neurons in area MT to moving plaids with different component gratings

14

16

Movshon et al. observations

• Cortical area V1:

all neurons behaved like component cells

• Cortical area MT:

layers 4 & 6: component cells

Evidence for two-stage motion measurement!

layers 2, 3, 5: pattern cells

• Perceptually, two components are not integrated if:

large difference in spatial frequency

large difference in speed

components have different stereo disparity

(2) no