

1

Measuring motion in one dimension

$\mathrm{V}_{\mathrm{x}}=$ velocity in x direction

- rightward movement: $\mathrm{V}_{\mathrm{x}}>0$
- leftward movement: $\mathrm{V}_{\mathrm{x}}<0$
- speed: $\left|\mathrm{V}_{\mathrm{x}}\right|$
- pixels/time step

$$
\mathrm{V}_{\mathrm{x}}=-\frac{\partial \mathrm{I} / \partial \mathrm{t}}{\partial \mathrm{I} / \partial \mathrm{x}}
$$

Computing 2D velocity from motion components

2

Measuring motion components in 2-D
(1) gradient of image intensity

$$
\nabla \mathrm{I}=(\partial \mathrm{I} / \partial \mathrm{x}, \partial \mathrm{I} / \partial \mathrm{y})
$$

(2) time derivative
$\partial \mathrm{I} / \partial \mathrm{t}$
(3) velocity along gradient:

$$
\mathrm{v}^{\perp}
$$

- movement in direction of gradient:

$$
\mathbf{v}^{\perp}>\mathbf{0}
$$

- movement opposite direction of gradient:
$\mathbf{v}^{\perp}<\mathbf{0}$

$$
\mathbf{v}^{\perp}=-\frac{\partial \mathrm{I} / \partial \mathrm{t}}{|\nabla \mathrm{I}|}=-\frac{\partial \mathrm{I} / \partial \mathrm{t}}{\left[(\partial \mathrm{I} / \partial \mathrm{x})^{2}+(\partial \mathrm{I} / \partial \mathrm{y})^{2}\right]^{1 / 2}}
$$

4

5

7

2-D velocities $\left(\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}\right)$ consistent with v^{\perp}

All $\left(V_{x}, V_{y}\right)$ such that the component of $\left(V_{x}, V_{y}\right)$ in the direction of the gradient is \mathbf{v}^{\perp}
$\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}\right)$: unit vector in direction of gradient
Use the dot product: $\quad\left(\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}\right) \cdot\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}\right)=\mathrm{v}^{\perp}$

$$
\mathrm{V}_{\mathrm{x}} \mathrm{u}_{\mathrm{x}}+\mathrm{V}_{\mathrm{y}} \mathrm{u}_{\mathrm{y}}=\mathrm{v}^{\perp}
$$

6

8

9

11

Option 2: Smoothness assumption:

Compute a velocity field that:
(1) is consistent with local measurements of image motion (perpendicular components)
(2) has the least amount of variation possible

Pure Translation:

true \& smoothest velocity field

10

Computing the smoothest velocity field

$$
\begin{aligned}
& \text { Find }\left(\mathrm{V}_{\mathrm{x}_{\mathrm{i}}} \mathrm{~V}_{\mathrm{y}_{\mathrm{i}}}\right) \text { that minimize: } \\
& \Sigma\left(\mathrm{V}_{\mathrm{xi}_{\mathrm{i}}} \mathrm{u}_{\mathrm{xi}_{\mathrm{i}}}+\mathrm{V}_{\mathrm{yi}_{\mathrm{i}}} \mathrm{u}_{\mathrm{y}_{\mathrm{i}}}-\mathrm{v}_{\mathrm{i}}\right)^{2}+\lambda\left[\left(\mathrm{V}_{\mathrm{x}_{\mathrm{i}+1}}-\mathrm{V}_{\mathrm{xi}_{\mathrm{i}}}\right)^{2}+\left(\mathrm{V}_{\left.\mathrm{y}_{\mathrm{i}+1}-\mathrm{V}_{\mathrm{yi}^{2}}{ }^{2}\right]}\right.\right.
\end{aligned}
$$

deviation from image motion measurements

```
            +
                                variation in velocity field
```


13

Logic behind the experiments

(1)

(2)

(3)

Component cells measure perpendicular components of motion e.g. selective for vertical features moving right
predicted responses:
(1) yes
(2) yes
(3) no

Pattern cells integrate motion components
e.g. selective for rightward motion of pattern
predicted responses:
(1) no
(2) no
(3) yes

Testing with sine-wave "plaids"

Moving plaid demo:
http://www.georgemather.com /MotionDemos/PlaidMP4.html

Movshon et al. recorded responses of neurons in area MT to moving plaids with different component gratings

14

Movshon et al. observations

- Cortical area V1:
all neurons behaved like component cells
- Cortical area MT:
layers 4 \& 6: component cells
Evidence for two-stage motion measurement!
layers $2,3,5$: pattern cells
- Perceptually, two components are not integrated if:
large difference in spatial frequency
large difference in speed
components have different stereo disparity

