

Observer motion problem

From image velocity field, compute:

• observer translation $(T_x T_y T_z)$ • observer rotation $(R_x R_y R_z)$ • depth at each location Z(x, y)bird's eye
view: T_z T_z T_z

The reference

But... simple strategy doesn't work if observer also rotates

Still recover heading with high accuracy!

7

Equations of observer motion

Translation Rotation Depth (T_x, T_y, T_z) (R_x, R_y, R_z) Z(x,y) $V_x = \frac{(-T_x + xT_z)/Z}{(-T_y + yT_z)/Z} + \frac{R_x xy - R_y(x^2+1) + R_z y}{R_x(y^2+1) - R_y xy - R_z x}$ $\downarrow \qquad \qquad \downarrow$ Translational Rotational Component Component

Observer Translation + Rotation

observer rotates their eyes

display simulates

translation + rotation

display simulates observer translation

8

2

Translational component of motion

$$V_{x}(x,y) = \frac{-T_{x} + xT_{z}}{Z(x,y)}$$
• $V_{x}, V_{y}, Z \text{ depend on position } (x,y)$
• Note $Z(x,y)$ in the

- denominator

$$V_{y}(x,y) = \frac{-T_{y} + yT_{z}}{Z(x,y)}$$

- V_x , V_y depend on ratios: T_x/Z T_y/Z T_z/Z (e.g. doubling both observer speed & depth gives the same velocity field)
- Where is the FOE? $x = T_x/T_z$ $y = T_v/T_z$

9

Longuet-Higgins & Prazdny

- Along a depth discontinuity, velocity differences depend only on observer translation
- Velocity differences point to the focus of expansion

Translational component of velocity

$$\mathbf{V}_{\mathbf{X}} = (-\mathbf{T}_{\mathbf{X}} + \mathbf{X}\mathbf{T}_{\mathbf{Z}})/\mathbf{Z}$$

Where is the FOE?

$$V_v = (-T_v + yT_z)/Z$$

Example 1:
$$T_x = T_y = 0$$
 $T_z = 1$ $Z = 10$ everywhere

Sketch the velocity field

$$T_x = T_y = 2$$
 $T_z =$

Example 2:
$$T_x = T_y = 2$$
 $T_z = 1$ $Z = 10$ everywhere

$$V_x =$$
 $V_y =$

10

Rieger & Lawton's algorithm

(1) At each image location, compute distribution of velocity differences within neighborhood

Appearance of sample distributions:

- (2) Find points with strongly oriented distribution, compute dominant direction
- (3) Compute focus of expansion from intersection of dominant directions

11

12

