Recovering 3D observer motion \& layout

https://www.youtube.com/watch?v=m80b6esRpaQ
1

3

2

4

Observer just translates toward FOE

But... simple strategy doesn't work if observer also rotates

5

Observer motion problem, revisited

pure translation

pure rotation

From image motion, compute:

- Observer translation

$$
\left(\mathrm{T}_{\mathrm{x}} \mathrm{~T}_{\mathrm{y}} \mathrm{~T}_{\mathrm{z}}\right)
$$

- Observer rotation
$\left(R_{x} R_{y} R_{z}\right)$
- Depth at each location

Z(x,y)

Observer undergoes both translation + rotation
7

6

Equations of observer motion

$$
\begin{aligned}
& \begin{array}{ccc}
\text { Translation } & \text { Rotation } & \text { Depth } \\
\left(\mathbf{T}_{\mathbf{x}}, \mathrm{T}_{\mathbf{y}}, \mathrm{T}_{\mathrm{z}}\right) & \left(\mathbf{R}_{\mathbf{x}}, \mathbf{R}_{\mathbf{y}}, \mathbf{R}_{\mathbf{z}}\right) & \mathbf{Z}(\mathbf{x}, \mathbf{y})
\end{array}
\end{aligned}
$$

> Translational
> Component
> Rotational
> Component

8

Translational component of motion

$$
\begin{aligned}
& V(x, y)=-\mathrm{T}_{\mathrm{x}}+x \mathrm{~T}_{\mathrm{z}} \quad \cdot \mathrm{~V}_{\mathrm{x}}, \mathrm{~V}_{\mathrm{y}}, \mathrm{Z} \text { depend } \\
& \text { on position (} \mathrm{x}, \mathrm{y} \text {) } \\
& \text { - Note Z(x,y) in the } \\
& \text { denominator } \\
& \mathrm{V}_{\mathrm{y}}(x, y)=\frac{-\mathrm{T}_{\mathrm{y}}+y \mathrm{~T}_{\mathrm{z}}}{\mathrm{Z}(x, y)}
\end{aligned}
$$

- $\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}$ depend on ratios: $\quad \mathrm{T}_{\mathrm{x}} / \mathrm{Z} \quad \mathrm{T}_{\mathrm{y}} / \mathrm{Z} \quad \mathrm{T}_{\mathrm{z}} / \mathrm{Z}$ (e.g. doubling both observer speed \& depth gives the same velocity field)
- Where is the FOE? $\quad x=T_{x} / T_{z} \quad y=T_{y} / T_{z}$

9

Longuet-Higgins \& Prazdny

- Along a depth discontinuity, velocity differences depend only on observer translation
- Velocity differences point to the focus of expansion

Translational component of velocity

$\mathrm{V}_{\mathrm{x}}=\left(-\mathrm{T}_{\mathbf{x}}+\mathbf{x} \mathrm{T}_{\mathrm{Z}}\right) / \mathrm{Z}$	Where is the FOE?
$\mathrm{V}_{\mathrm{y}}=\left(-\mathrm{T}_{\mathbf{y}}+\mathrm{yT}_{\mathrm{z}}\right) / \mathrm{Z}$	$\mathrm{x}=$

Example 1: $\mathrm{T}_{\mathrm{x}}=\mathrm{T}_{\mathrm{y}}=0 \quad \mathrm{~T}_{\mathrm{z}}=1 \quad \mathrm{Z}=10$ everywhere

\qquad $\mathrm{V}_{\mathrm{y}}=$ \qquad

Sketch the velocity field

Example 2: $\mathrm{T}_{\mathrm{x}}=\mathrm{T}_{\mathrm{y}}=2 \quad \mathrm{~T}_{\mathrm{Z}}=1 \quad \mathrm{Z}=10$ everywhere

$$
\mathrm{V}_{\mathrm{x}}=
$$

\qquad
\qquad

10

Rieger \& Lawton' s algorithm

(1) At each image location, compute distribution of velocity differences within neighborhood

Appearance of sample distributions:

(2) Find points with strongly oriented distribution, compute dominant direction

(3) Compute focus of expansion from intersection of dominant directions

13

14

