Steps of the stereo process

left

right

- extract features from the left and right images, whose stereo disparity will be measured
- match the left and right image features and measure their disparity in position

"stereo correspondence problem"

• use stereo disparity to compute depth

1

2

Random-dot stereograms

- Bela Julesz, 1971
- $\bullet\,$ stereo system can function independently
- we can match "simple" features
- highlight the *ambiguity* of the matching process

3

Constraints on stereo correspondence • uniqueness

similarity

• continuity

• epipolar constraint

5

7

6

Epipolar constraint P epipolar line epipolar line Right view possible matching candidates for p_L in the left image lie along a line in the right image - the epipolar line

The real world works

against us sometimes...

right

8

2

Solving the stereo correspondence problem left right next close how different? how similar? sum of absolute differences normalized correlation

9

Measuring goodness of match between patches

(1) sum of absolute differences

$$(1/n)\sum_{\text{patch}}|p_{\text{left}}-p_{\text{right}}|$$

 p_{right}

(2) normalized correlation

optional: divide by n = number of pixels in patch

$$\frac{\text{(1/n)} \sum_{\text{patch}} \ \frac{(p_{\text{left}} - \overline{p_{\text{left}}}) \ (p_{\text{right}} - \overline{p_{\text{right}}})}{\sigma_{p_{\text{left}}} \sigma_{p_{\text{right}}}} \frac{\overline{p}}{\overline{p}}$$

 \overline{p} = average of values within patch σ = standard deviation of values within patch 10

Region-based stereo matching algorithm

for each row r

for each column c

let p_{left} be a square patch centered on (r,c) in the left image

initialize best match score m_{best} to ∞

initialize best disparity d_{best}

for each disparity d from $-d_{range}$ to $+d_{range}$

let p_{right} be a square patch centered on (r,c+d) in the right image

compute the match score m between p_{left} and p_{right}

(sum of absolute differences)

if $(m < m_{best})$, assign $m_{best} = m$ and $d_{best} = d$

record d_{best} in the disparity map at (r,c)

How are the constraints used??

11 12