

- extract features from the left and right images, whose stereo disparity will be measured
- match the left and right image features and measure their disparity in position
"stereo correspondence problem"
- use stereo disparity to compute depth

1

3

2

Random-dot stereograms

- Bela Julesz, 1971

- stereo system can function independently
- we can match "simple" features
- highlight the ambiguity of the matching process

Constraints on stereo correspondence

- uniqueness

- similarity
- continuity
- epipolar constraint

5

Epipolar constraint

possible matching candidates for p_{L} in the left image lie along a line in the right image - the epipolar line

7

6

8

stereo camera calibration: given known viewing geometry, transform left/right images so that corresponding features lie on the same horizontal lines

Solving the stereo correspondence problem

10

Region-based stereo matching algorithm

for each row r
for each column c
let $\mathrm{p}_{\text {left }}$ be a square patch centered on (r, c) in the left image
initialize best match score $\mathrm{m}_{\text {best }}$ to ∞
initialize best disparity $\mathrm{d}_{\text {best }}$
for each disparity d from $-d_{\text {range }}$ to $+d_{\text {range }}$
let $\mathrm{p}_{\text {right }}$ be a square patch centered on ($\mathrm{r}, \mathrm{c}+\mathrm{d}$) in the right image
compute the match score m between $p_{\text {left }}$ and $p_{\text {right }}$
(sum of absolute differences)
if $\left(\mathrm{m}<\mathrm{m}_{\text {best }}\right)$, assign $\mathrm{m}_{\text {best }}=\mathrm{m}$ and $\mathrm{d}_{\text {best }}=\mathrm{d}$
record $d_{\text {best }}$ in the disparity map at (r, c)
How are the constraints used??

