Steps of the stereo process

- extract features from the left and right images, whose stereo disparity will be measured
- match the left and right image features and measure their disparity in position
 "stereo correspondence problem"
- use stereo disparity to compute depth

Stereo viewing geometry

Stereo disparity

Random-dot stereograms

- Bela Julesz, 1971
- stereo system can function independently
- we can match “simple” features
- highlight the ambiguity of the matching process
Constraints on stereo correspondence

- uniqueness
- similarity
- continuity
- epipolar constraint

The real world works against us sometimes...

Epipolar constraint

possible matching candidates for p_L in the left image lie along a line in the right image - the epipolar line
Epipolar constraint

- *Stereo camera calibration*: given known viewing geometry, transform left/right images so that corresponding features lie on the same horizontal lines.

Solving the stereo correspondence problem

1. **Sum of absolute differences**
 \[
 \frac{1}{n} \sum_{\text{patch}} | p_{\text{left}} - p_{\text{right}} |
 \]

2. **Normalized correlation**
 \[
 \frac{1}{n} \sum_{\text{patch}} \frac{(p_{\text{left}} - \bar{p}_{\text{left}})(p_{\text{right}} - \bar{p}_{\text{right}})}{\sigma_{\text{left}} \sigma_{\text{right}}}
 \]

 - optional: divide by \(n \) = number of pixels in patch
 - \(\bar{p} \) = average of values within patch
 - \(\sigma \) = standard deviation of values within patch

Region-based stereo matching algorithm

- for each row \(r \)
 - for each column \(c \)
 - let \(p_{\text{left}} \) be a square patch centered on \((r,c)\) in the left image
 - initialize best match score \(m_{\text{best}} \) to \(\infty \)
 - initialize best disparity \(d_{\text{best}} \)
 - for each disparity \(d \) from \(-d_{\text{range}}\) to \(+d_{\text{range}}\)
 - let \(p_{\text{right}} \) be a square patch centered on \((r,c+d)\) in the right image
 - compute the match score \(m \) between \(p_{\text{left}} \) and \(p_{\text{right}} \)
 - (sum of absolute differences)
 - if \(m < m_{\text{best}} \), assign \(m_{\text{best}} = m \) and \(d_{\text{best}} = d \)
 - record \(d_{\text{best}} \) in the disparity map at \((r,c)\)

How are the constraints used??