
Homework 7: Few-shot Learning in LLMs
Due November 27th at 10pm

In this homework, you will explore few-shot learning in large language models (LLMs). In few-
shot learning, we don’t train the model on any more data. Instead, we simply show the language
model some examples in the desired format.

You should submit all of your Python files and your write-up (as a PDF) on Gradescope.

1 Using LLaMa
In this assignment, you will work with a large language model called LLaMa, which was developed
by Meta and released publicly. I am running this model on my research server.

I have given you a Python file called query_llama.py. This provides a function, generate, that
sends a query request to LLaMa.

2 Secret codes
When you were a kid, did you have a code language that you used with your friends? One common
code language is pig latin. In pig latin, if the word starts with a consonant, you move it to the back
of the word and append “ay”. If it starts with a vowel, you simply append “ay.”

Can LLaMA break this code?

2.1 Dataset creation
Write a program to generate your pig latin dataset. Your program should read a file containing a
list of words and produce a file containing a corresponding list of pig latin words.

Use your program to generate a test set. Your test set should contain 20 words. Try to include a
variety of words (low frequency, high frequency, words starting with vowels, etc.).

2.2 Few-shot learning
Next, write a program that tests how well a large language model performs on decoding pig latin.
Your program should import and use the query_llama.py program that I have provided. This file
contains a function for querying LLaMa. Your task is to craft prompts to feed to the model so that
it solves the pig latin decoding task.

1



2.3 Prompt Engineering
Start by writing a function called make_prompt. This function should take in a pig latin word and
prepare a prompt. You should try out different formats for prompts. Try at least the following:

• Describing the task in different ways
• Adding different numbers of examples to the prompt
• Formatting the examples in different ways

2.4 Query model
Next, write a wrapper for the model query function called query_model. Your function should
take in a prompt and call query_llama.py to get the model’s prediction.

Unless you are interested in tinkering with the model hyperparameters, you can call the generate
function from query_llama on a single prompt as follows:

query_llama.generate(prompt)

2.5 Evaluation
When you run a prompt through the LLM, you will need to do some additional string processing
to get back an answer. Sometimes, the model will go on to produce many examples rather than
just completing the single task that you set.

Write a function called get_answer. Your function should take in the response from the LLM. It
should post-process the response and return a single answer as a string.

2.6 Running the experiment
Write a function called run_one_prompt that combine the functions that you have written above.
It should take a pig latin word, its decoded answer, and return 1 or 0 based on whether the LLM
successfully decoded the word.

Now you can finish the main function for your program. Your main function should read in the test
items and labels from file. It should loop through the pig latin words, calling run_one_prompt on
each word/label pair. It should sum up the scores returned by and print out the model’s accuracy.

2.7 Analysis questions
1. How well does the LLM perform on the task?
2. Describe the different strategies you tried out for prompt engineering. What worked well?

What didn’t work?
3. What factors do you think affect the model’s performance?

2



3 Commonsense reasoning
Many probe tasks have been proposed to evaluate the commonsense reasoning capabilities of
LLMs. We will use the Choice of Plausible Alternatives (COPA) probe task from the SuperGLUE
suite of LLM benchmarks to evaluate the fewshot performance of an LLM.

Here is an example from COPA (the correct choice is (b)):

1. Premise: The man broke his toe.
Question: What was the CAUSE of this?

(a) He got a hole in his sock.
(b) He dropped a hammer on his foot.

I have provided you with two small subsets from COPA: train-small and val. We will test model
performance on train-small, but you can take examples from val when building your prompts.

The questions are formatted as JSONL. Each example is in a JSON dictionary; the five key fields
are premise, choice1, choice2, question, and label. You can ignore idx.

3.1 Reading the data
Write a function called read_copa_data. It should take a single argument, the name of the dataset
file to be processed. It should return two lists. The first list should contain dictionaries from the
training items file; the second should contain just the labels.

3.2 Crafting prompts
Next, write a function called make_prompt. This function should take in a COPA problem. It
should prepend examples of solving the task to the target word, and return the full prompt. You
should experiment with different formats for the prompt, as for the pig latin probe task.

3.3 Query model
Write a wrapper function called query_model. It should take a prompt, call the imported model
query function, and return the result.

3.4 Evaluation
Write a function called get_answer. Your function should take in the response from the LLM. It
should post-process the response and return a single answer as a string.

3.5 Running the experiment
Write a function called run_one_prompt that combine the functions that you have written above.
It should take a COPA problem and return 1 or 2 to indicate which choice the LLM has selected.

3



Now you can finish the main function for your program. Your main function should read in the
test items and labels from file. It should loop through the COPA items, calling run_one_prompt
on each problem. It should sum up the scores returned by and print out the model’s accuracy.

3.6 Analysis questions
1. How well does the LLM perform on the task?
2. What prompting formats did you experiment with? What worked well and what didn’t work?
3. What factors do you think affect the model’s performance?

4 Final project preparation
For your CS333 final project, you must build something new. The coding effort involved should
be equivalent to a homework assignment. You will write a 6 page paper about your project.

4.1 Project topic
Please answer the following questions:

• What is the goal of your project?
• What previous work is available on your topic?
• How will you know that you have accomplished it?
• What data do you plan to use?
• Are there other models or resources you plan to build on?
• How will you evaluate your model?

4.2 Project timeline
Please sketch a timeline for completing the components of the project you have proposed.

5 Intellectual Curiosity (10pts)
As usual, you will receive 90 points for implementing everything described above. To increase
your score further, you can extend your investigation in some way. If you choose to do this,
please briefly describe what you’ve done in your report.

4


	Using LLaMa
	Secret codes
	Dataset creation
	Few-shot learning
	Prompt Engineering
	Query model
	Evaluation
	Running the experiment
	Analysis questions

	Commonsense reasoning
	Reading the data
	Crafting prompts
	Query model
	Evaluation
	Running the experiment
	Analysis questions

	Final project preparation
	Project topic
	Project timeline

	Intellectual Curiosity (10pts)

