
Vector 
Semantics & 
Embeddings

 Vector Semantics

 



Desiderata 
Concepts or word senses 

◦ Have a complex many-to-many association with words (homonymy, 
multiple senses) 

Have relations with each other 
◦ Synonymy 
◦ Antonymy 
◦ Similarity 
◦ Relatedness 
◦ Connotation



Defining meaning as a point in space based on distribution

Each word = a vector   (not just "good" or "w45") 

Similar words are "nearby in semantic space" 
We build this space by seeing which words are nearby in text



We'll discuss 2 kinds of embeddings
tf-idf  

◦ Information Retrieval workhorse! 
◦ A common baseline model 
◦ Sparse vectors 
◦ Words are represented by (a simple function of) the counts of nearby 

words 
Word2vec 

◦ Dense vectors 
◦ Representation is created by training a classifier to predict whether a 

word is likely to appear nearby 
◦ Later we'll discuss extensions called  contextual embeddings



Cosine as a similarity metric

-1: vectors point in opposite directions  
+1:  vectors point in same directions 
0: vectors are orthogonal 

But since raw frequency values are non-negative, the 
cosine for term-term matrix vectors ranges from 0–1 

47



Solution 1: tf-idf
tf-idf: Term Frequency - Inverse Document Frequency

Term Frequency: Inverse Document Frequency:

tf-idf:



Vector 
Semantics & 
Embeddings

 Word2vec



Sparse versus dense vectors

tf-idf (or PMI) vectors are 
◦ long (length |V|= 20,000 to 50,000) 
◦ sparse (most elements are zero) 

Alternative: learn vectors which are 
◦ short (length 50-1000) 
◦ dense (most elements are non-zero)



Sparse versus dense vectors

Why dense vectors? 
◦ Short vectors may be easier to use as features in machine 

learning (fewer weights to tune) 
◦ Dense vectors may generalize better than explicit counts 
◦ Dense vectors may do better at capturing synonymy: 

◦ car and automobile are synonyms; but are distinct dimensions 
◦ a word with car as a neighbor and a word with automobile as a 

neighbor should be similar, but aren't 

◦ In practice, they work better80



Common methods for getting short dense vectors

“Neural Language Model”-inspired models 
◦ Word2vec (skipgram, CBOW), GloVe 

Singular Value Decomposition (SVD) 
◦ A special case of this is called LSA – Latent Semantic Analysis 

Alternative to these "static embeddings": 
• Contextual Embeddings (ELMo, BERT) 
• Compute distinct embeddings for a word in its context 
• Separate embeddings for each token of a word



Simple static embeddings you can download!

Word2vec (Mikolov et al) 
https://code.google.com/archive/p/word2vec/ 

GloVe (Pennington, Socher, Manning) 
http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/


Word2vec
Popular embedding method 
Very fast to train 
Code available on the web 
Idea: predict rather than count 
Word2vec provides various options. We'll discuss: 
  skip-gram with negative sampling (SGNS) 
 

 



Word2vec
Instead of counting how often each word w occurs near "apricot" 

◦ Train a classifier on a binary prediction task: 
◦ Is w likely to show up near "apricot"? 

We don’t actually care about this task 
◦ But we'll take the learned classifier weights as the word embeddings 

Big idea:  self-supervision:  
◦ A word c that occurs near apricot in the corpus cats as the gold "correct 

answer" for supervised learning 
◦ No need for human labels 
◦ Bengio et al. (2003); Collobert et al. (2011) 



Approach: predict if candidate word c is a "neighbor"

1. Treat the target word t and a neighboring context word c 
as positive examples.

tagofwadsassuptionrptmesurjntii.int

2 Randomly sample otherwords in thevocabulary
to create negative examples

3 Train a logistic regression classifier to

distinguish positive negative examples



Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence: 

…lemon, a [tablespoon of  apricot  jam,   a]  pinch… 
                        c1                   c2                 c3      c4                                  [target]



Skip-Gram Classifier
(assuming a +/- 2 word window) 

…lemon, a [tablespoon of  apricot  jam,   a]  pinch… 
                        c1                   c2 [target]    c3      c4 

Goal: train a classifier that is given a candidate (word, context) pair 
   (apricot, jam) 
    (apricot, aardvark) 
  … 
And assigns each pair a probability: 

Positive
Negative

Plt Wic Pf two 1 Pettine



Similarity is computed from dot product

Remember: two vectors are similar if they have a high 
dot product 
◦ Cosine is just a normalized dot product 

So: 
◦ Similarity(w,c)  ∝ w · c 

We’ll need to normalize to get a probability  
◦ (cosine isn't a probability either)

92

sigmoid x Ipf x



Turning dot products into probabilities

Sim(w,c) ≈ w · c 
To turn this into a probability, we'll use the 
sigmoid function:



Turning dot products into probabilities

Sim(w,c) ≈ w · c 
To turn this into a probability, we'll use the sigmoid 
function:

o f c w ExpC c w
I PCtl w c

W vector representation of targetward
C vector representation ofcontextword



How Skip-Gram Classifier computes P(+|w, c) 

This is for one context word, but we have lots of context words. 
We'll assume independence and multiply them:

examplesPrt twice c If ggq.ws
c positive

log Plt w Ca c É log of ci w
Probability of w appearing in window Ca L



Skip-gram classifier: summary

A probabilistic classifier, given  
• a test target word w  
• its context window of L words c1:L 

Estimates probability that w occurs in this window based on 
similarity of w (embeddings) to c1:L (embeddings). 

To compute this, we just need embeddings for all the words.

ppeary

Goal1 Maximize

window

Mining
probabilityof w in

observedcontext probabilityof
W co occurring

w randomlysampled
word



These embeddings we'll need: a set for w, a set for c



Vector 
Semantics & 
Embeddings

 Word2vec: Learning embeddings



Skip-Gram Training data

…lemon, a [tablespoon of  apricot  jam,   a]  pinch… 
                        c1                   c2 [target]    c3      c4

102

I

sapling Negatives foreconpositive
example we'llgrabknegative
examples samplingbyfrequencynegativeexaples

MEI
from a vocab

my
where
coaxial



Skip-Gram Training data

…lemon, a [tablespoon of  apricot  jam,   a]  pinch… 
                        c1                   c2 [target]    c3      c4

104



Word2vec: how to learn vectors

Given the set of positive and negative training instances, 
and an initial set of embedding vectors  
Goal: adjust the word vectors so they

5/12/21 106

Maximize the similarity of the targetward context
word positive pairs Cw Cpas

Minimize the similarity of the fu Cneg pairs



Loss function for one w with cpos , cneg1 ...cnegk 
Maximize the similarity of the target with the actual context words, 
and minimize the similarity of the target with the k negative sampled 
non-neighbor words. 

he
Pit micros p f twang

ylog ofw epos log.fr neg

More than I negative example

I logofcpos wJt Cogof_cneg.w
e

foreach y
individualword



Learning the classifier

How to learn? 
◦ Stochastic gradient descent! 

We’ll adjust the word weights to 
◦ make the positive pairs more likely  
◦ and the negative pairs less likely,  
◦ over the entire training set.



Intuition of one step of gradient descent
Capricot apricottysm
wapriot

Waproot apricot matrix

Ja

i



Two sets of embeddings

SGNS learns two sets of embeddings 
  Target embeddings matrix W 
  Context embedding matrix C  
It's common to just add them together, representing 
word i as the vector  wi + ci



Summary: How to learn word2vec (skip-gram) embeddings

Start with V random d-dimensional vectors as initial 
embeddings 
Train a classifier based on embedding similarity 

◦Take a corpus and take pairs of words that co-occur as positive 
examples 

◦Take pairs of words that don't co-occur as negative examples 
◦Train the classifier to distinguish these by slowly adjusting all 
the embeddings to improve the classifier performance 

◦Throw away the classifier code and keep the embeddings.



Vector 
Semantics & 
Embeddings

 Properties of Embeddings



Gender in NLP



The kinds of neighbors depend on window size
Small windows (C= +/- 2) : nearest words are syntactically 
similar words in same taxonomy 

◦Hogwarts nearest neighbors are other fictional schools 
◦Sunnydale, Evernight, Blandings 

Large windows (C= +/- 5) :  nearest words are related words 
in same semantic field 

◦Hogwarts nearest neighbors are Harry Potter world: 
◦Dumbledore, half-blood,  Malfoy



Analogical relations
The classic parallelogram model of analogical reasoning 
(Rumelhart and Abrahamson 1973) 
To solve: "apple is to tree as grape is to  _____" 
Add tree – apple  to grape to get vine



Analogical relations via parallelogram

The parallelogram method can solve analogies with 
both sparse and dense embeddings (Turney and 
Littman 2005, Mikolov et al. 2013b) 
  king – man + woman is close to queen 
  Paris – France + Italy is close to Rome 
For a problem a:a*::b:b*, the parallelogram method is:



Structure in GloVE Embedding space



Caveats with the parallelogram method

It only seems to work for frequent words, small 
distances and certain relations (relating countries to 
capitals, or parts of speech), but not others. (Linzen 
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a)  

Understanding analogy is an open area of research 
(Peterson et al. 2020)



Train embeddings on different decades of historical text to see meanings shift
~30 million books, 1850-1990, Google Books data

Embeddings as a window onto historical semantics

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal 
Statistical Laws of Semantic Change. Proceedings of ACL.



Embeddings reflect cultural bias!

Ask “Paris : France :: Tokyo : x”  
◦ x = Japan 

Ask “father : doctor :: mother : x”  
◦ x = nurse 

Ask “man : computer programmer :: woman : x”  
◦ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer 
programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-4357. 2016.

Algorithms that use embeddings as part of e.g., hiring searches for 
programmers, might lead to bias in hiring



Historical embedding as a tool to study cultural biases

• Compute a gender or ethnic bias for each adjective: e.g., how 
much closer the adjective is to "woman" synonyms than "man" 
synonyms, or names of particular ethnicities 
• Embeddings for competence adjective (smart, wise, brilliant, 

resourceful, thoughtful, logical) are biased toward men, a bias 
slowly decreasing 1960-1990 

• Embeddings for dehumanizing adjectives (barbaric, 
monstrous, bizarre)  were biased toward Asians in the 1930s, 
bias decreasing over the 20th century. 

• These match the results of old surveys done in the 1930s 

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. 
Proceedings of the National Academy of Sciences 115(16), E3635–E3644.


