Vector Semantics

Vector
Semantics &
Embeddings

Desiderata

Concepts or word senses

Have a complex many-to-many association with words (homonymy,
multiple senses)

Have relations with each other
Synonymy
Antonymy
Similarity
Relatedness
Connotation

Defining meaning as a point in space based on distribution

Each word = a vector (not just "good" or "w,.")

Similar words are "nearby in semantic space”

We build this space by seeing which words are nearby in text

notgood. | bad

to by S dislike worst
that now are incredibly bad

a | you
than with

very good incredibly good
amazing fantastic
terrific nice wonderful

good

We'll discuss 2 kinds of embeddings
tf-idf

Information Retrieval workhorse!

A common baseline model

Sparse vectors

Words are represented by (a simple function of) the counts of nearby
words

Word2vec
Dense vectors
Representation is created by training a classifier to predict whether a
word is likely to appear nearby
Later we'll discuss extensions called contextual embeddings

Cosine as a similarity metric

0: vectors are orthogonal

-1: vectors point in opposite directions \ /
+1: vectors point in same directions . v

But since raw frequency values are non-negative, the
cosine for term-term matrix vectors ranges from 0-1

Solution 1: tf-idf

tf-idf: Term Frequency - Inverse Document Frequency

Term Frequency: Inverse Document Frequency:
. N
tf, ; = count(t,d) df; = df,
, N
tf, 4 = log,o(count(t,d) +1) idf; = log (d_ft)

tf-idf: wra = th; g X 1df;

Word2vec

Vector
Semantics &
Embeddings

Sparse versus dense vectors

tf-idf (or PMI) vectors are
long (length |V|= 20,000 to 50,000)
sparse (most elements are zero)

Alternative: learn vectors which are
short (length 50-1000)
dense (most elements are non-zero)

Sparse versus dense vectors

Why dense vectors?
Short vectors may be easier to use as features in machine
learning (fewer weights to tune)
Dense vectors may generalize better than explicit counts
Dense vectors may do better at capturing synonymy:

car and automobile are synonyms; but are distinct dimensions

a word with car as a neighbor and a word with automobile as a
neighbor should be similar, but aren't

In practice, they work better

Common methods for getting short dense vectors
“Neural Language Model”-inspired models
> Word2vec (skipgram, CBOW), GloVe

Singular Value Decomposition (SVD)
o A special case of this is called LSA — Latent Semantic Analysis

Alternative to these "static embeddings":
e Contextual Embeddings (ELMo, BERT)
« Compute distinct embeddings for a word in its context
e Separate embeddings for each token of a word

Simple static embeddings you can download!

Word2vec (Mikolov et al)
https://code.google.com/archive/p/word2vec/

GloVe (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/

Word2vec

Popular embedding method

Very fast to train

Code available on the web

|dea: predict rather than count

Word?2vec provides various options. We'll discuss:
skip-gram with negative sampling (SGNS)

Word2vec

Instead of counting how often each word w occurs near "apricot”

Train a classifier on a binary prediction task:
Is w likely to show up near "apricot"?

We don’t actually care about this task
But we'll take the learned classifier weights as the word embeddings

Big idea: self-supervision:
A word c that occurs near apricot in the corpus cats as the gold "correct
answer" for supervised learning
No need for human labels
Bengio et al. (2003); Collobert et al. (2011)

Approach: predict if candidate word c is a "neighbor”

Treat the target word t and a neighboring context word ¢

as positive examples. —
P P rbaod'Of Ankrd § QWOA

e s 0 g P

(?09'&\“& . (stM /‘a/n\) as Co—acc»f;ﬂj

Q/KW"" (SucT;;(”) (Svjﬂ(s

[\)h(,)/a[' (\v&)

2. Rondomy sEPL O wprds N fne Nocabdery
o preste geNe exSrple |
5 e @ loghe pegrestr classifics e

dikinguin - fusile f - ugohie ofor §

Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

...lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] ¢c3 c4

Skip-Gram Classifier

(assuming a +/- 2 word window)

...lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] c3 ¢4

Goal: train a classifier that is given a candidate (word, context) pair
Qo«\«w - (apricot, jam)

" (apricot, aardvark
Nett” 18 ’

And assigns each pair a probability:
Pl wic R (- lw)z 4= Plsiwd)

Similarity is computed from dot product

Remember: two vectors are similar if they have a high

dot product
Cosine is just a normalized dot product

So:
Similarity(w,c) «w-c

We'll need to normalize to get a probability
(cosine isn't a probability either) {

;Hjmom . O"C?‘\ g ‘+Q7<,o (’?\3

Turning dot products into probabilities

Sim(w,c) =W - ¢

To turn this into a probability, we'll use the
sigmoid function:

Turning dot products into probabilities

Sim(w,c) = W * ¢

To turn this into a probability, we'll use the sigmoid

function: ‘

P(+|W,C) — G(C‘\N\’ "('QxP("C'W)

P(—|w,c) = | - (PC“"W,C)

Vedal (gprescaketten of 1ot v
TN pgpwsmsﬁ—/n of confeat el

How Skip-Gram Classifier computes P(+]|w, c)

1
1+exp(—c-w)

P(+|w,c) = o(c-w) =

This is for one context word, but we have lots of context words.

We'll assume independence and muliply them: - ‘)osi’fi\/{

PC+lw,) =)1 oCci-w) ek s
=) L

/03 P(’HW, QZLX = 7 103 0"[6':"’")

- .

Probabilihy of W ofuaty (0 Wwdaw Ca:p

Skip-gram classifier: summary

Cosl 4 M@M::"'Z" Codl 2+ inke
ope . . fo . . Y4
A probabilistic classifier, given M*’*‘}ww‘: et V‘obdam«&ofr
a test target word w e W o .
O« Oca
its context window of L words c,, o (onlon W\W}

o
Estimates probability that w occurs in this window based on

similarity of w (embeddings) to ¢,., (embeddings).

To compute this, we just need embeddings for all the words.

These embeddings we'll need: a set for w, a set for ¢

1.d
aardvark [eee] 1 \

apricot [eee

r W target words

H . zebra [eee) |V| j

aardvark [eee] |V/| —|—1\

apricot [eee

r C context & noise
words

zebra [eee] 2V J

Word2vec: Learning embeddings

Vector
Semantics &
Embeddings

Skip-Gram Training data
/

...lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] ¢3 ¢4

Sonphy Ngyokes & een (ws“““‘l
b, gl oeb K ygehine

positive examples + {lLTxH\m ew:‘r[;(,u - econyies, Sl (’1‘0“2"“’“7
w Cpos W C 4 feemr v Neced.
apricot tablespoon epﬂw? wdyerk

apricot of WA

apricot jam wore

apricot a coaxial

Skip-Gram Training data

...lemon, a [tablespoon of apricot jam, a] pinch...

cl c2 [target] c¢3 ¢4
positive examples + negative examples -
w Cpos w Cneg w Cneg
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where apricot dear

apricot a apricot coaxial apricot if

Word2vec: how to learn vectors

Given the set of positive and negative training instances,
and an initial set of embedding vectors

Goal: adjust the word vectors so they

- Mexwmize e swilerity oF fne forgt Werd , contod
word positine rirs (w, Coos)

-~ Mninie iw sym‘lw":? of dne (w, Q,,,,J) pov s

Loss function for one w with ¢

pos ? c

.C

negl ***~negk

Maximize the similarity of the target with the actual context words,
and minimize the similarity of the target with the k negative sampled

non-neighbor words.
T pUtlw, () P (-1 WJCWQFS
Lee = Llslo (gl Elo (o cudl]
Mot o 4 V\m’d-N* Mvtrh .
k
e [[OOX O'CCfgs‘ w)+ 2[0‘/) O'(-CN‘.J‘W)‘S

o &
'\MN\\&UC\ W&

Learning the classifier

How to learn?
Stochastic gradient descent!

We'll adjust the word weights to
make the positive pairs more likely
and the negative pairs less likely,
over the entire training set.

Intuition of one step of gradient descent

W <

(aardvark @

apricot

C |

k zebra
(aard-\‘a.r;ig_

Gl

rjém

matrix

k=2

Tolstoy

|

k zebra

wa(m

ei)ﬁ(o‘ + 1%

move apricot and jam closer,

\

=~ _increasing Gy, * W WT"M . ZTJD‘COH Wity

“...apricot jam...”

decreasing c

neg2

', move apricot and matrix apart
decreasing c

neg "W

.} - “"move apricot and Tolstoy apart

*W

Two sets of embeddings

SGNS learns two sets of embeddings
Target embeddings matrix W
Context embedding matrix C

It's common to just add them together, representing
word i as the vector w, + ¢

Summary: How to learn word2vec (skip-gram) embeddings

Start with V random d-dimensional vectors as initial
embeddings

Train a classifier based on embedding similarity
Take a corpus and take pairs of words that co-occur as positive
examples
Take pairs of words that don't co-occur as negative examples

Train the classifier to distinguish these by slowly adjusting all
the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

Properties of Embeddings

Vector
Semantics &
Embeddings

Gender in NLP

Harms of Gender Exclusivity and Challenges in Non-Binary
Representation in Language Technologies

Sunipa Dev Masoud Monajatipoor* Anaelia Ovalle* Arjun Subramonian®
she/her he/him they/he/she they/them
UCLA UCLA UCLA UCLA, Queer in Al

Jeff M Phillips Kai-Wei Chang

he/him he/him

University of Utah UCLA
Abstract A bulk of social bias studies on language mod-
Content Warning: This paper contains exam- els have focused on binary gender and the stereo-
ples of stereotypes and associations, misgen- types associated with masculine and feminine at-
dering, erasure, and other harms that could tributes (Bolukbasi et al., 2016; Webster et al.,
be offensive and triggering to trans and non- 2018; Dev et al., 2020b). Additionally, models of-
binary individuals. ten rely on gendered information for decision mak-
Gender is widely discussed in the context of ing, such as in named entity recognition, corefer-
language tasks and when examining the stereo- ence resolution, and machine translation (Mehrabi

PR Tk T R [N TY eee e e e

The kinds of neighbors depend on window size

Small windows (C= +/- 2) : nearest words are syntactically
similar words in same taxonomy

Hogwarts nearest neighbors are other fictional schools
Sunnydale, Evernight, Blandings

Large windows (C= +/- 5) : nearest words are related words
in same semantic field

Hogwarts nearest neighbors are Harry Potter world:
Dumbledore, half-blood, Malfoy

Analogical relations

The classic parallelogram model of analogical reasoning
(Rumelhart and Abrahamson 1973)

To solve: "apple is to tree as grape is to

Add treé — dpplé to grapé to get vine

tree
—

)

apple

vine

grape

Analogical relations via parallelogram

The parallelogram method can solve analogies with
both sparse and dense embeddings (Turney and
Littman 2005, Mikolov et al. 2013b)

king — man + woman is close to queen

Paris — France +Ttaly is close to Rome

For a problem a:a*::b:b*, the parallelogram method is:

b* = argmin distance(x,b —a+ a*)

Structure in GloVE Embedding space

T

0.5

0.4

T

0.3

T

0.2

T

0.1

T

; niece * countess
*aunt + duchess-
;éistell :
[/
Fry /' +empress
. / /’
t /
I | / -
: [Ihel /’/
ir
' 1nepH‘ew /e // / i
! | . / ;A
: Luncl joman d Loarl! -
| uncle f / rqueerny /
/
! brother / // : {duke
, —
/ / | /
| / | ‘emperor
I / [
I / I
I / [—
I {sir [
!man king .

-05 -04 -03 -02 -0 0 0.1 0.2 0.3 0.4 0.5

Caveats with the parallelogram method

It only seems to work for frequent words, small

distances and certain relations (relating countries to
capitals, or parts of speech), but not others. (Linzen
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a)

Understanding analogy is an open area of research
(Peterson et al. 2020)

Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift

~30 million books, 1850-1990, Google Books data

a .. gay (1900s) b C solem
daft 9 pread awful (1850s)
nauntng majes IC
erl | ow u
- broadcast (1850s).. . . o
I:lli' | acatte IIII::A'IZ"‘,'
broadcast (1900s) rril
vSpapers \nnalli 0 terrible
'~ isexual talevisio awful (1900s) wonderfu
gay (1990s) 'ERHE s awful (1990s)
leshian L1 broadcast (1990s) awfully’™=" ™~

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal
Statistical Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer
programmer as woman is to homemaker? debiasing word embeddings." In NeurlPS, pp. 4349-4357. 2016.

Ask “Paris : France :: Tokyo : x”
X = Japan

Ask “father : doctor :: mother : x”
X = nurse

Ask “man : computer programmer :: woman : x”
X = homemaker

Algorithms that use embeddings as part of e.g., hiring searches for
programmers, might lead to bias in hiring

Historical embedding as a tool to study cultural biases

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes.
Proceedings of the National Academy of Sciences 115(16), E3635—-E3644.

« Compute a gender or ethnic bias for each adjective: e.g., how
much closer the adjective is to "woman" synonyms than "man"
synonyms, or names of particular ethnicities
« Embeddings for competence adjective (smart, wise, brilliant,
resourceful, thoughtful, logical) are biased toward men, a bias
slowly decreasing 1960-1990

« Embeddings for dehumanizing adjectives (barbaric,
monstrous, bizarre) were biased toward Asians in the 1930s,
bias decreasing over the 20th century.

« These match the results of old surveys done in the 1930s

