Regression

Classification in logistic regression: summary

Given:
o a set of classes: (+ sentiment,- sentiment)

° avector x of features [x1, x2, .., Xn] d X
> x1= count("awesome" 1 {l‘”’ s i
> x2 =log(number of words in review) /l 3 Mm

° A vector wof weights [wl, w2, .., wn]

o w: for each feature f;
Wi ure sof hac W onse nan 2

4
Py=1) = o(w-x+b) classed

1
1+exp(—(w-x+b))

The two phases of logistic regression

Training: we learn weights w and b using stochastic

gradient descent and cross-entropy loss.
|€/>4"W] O'J»W‘”W- wetric

Test: Given a test example x we compute p(y|x)
using learned weights w and b, and return
whichever label (y =1 or y = 0) is higher probability

How Does Learning Work?

Learning in Supervised Classification

Supervised classification:
« We know the correct label y (either O or 1) for each x.
« But what the system produces is an estimate, %

We want to set w and b to minimize the distance between
our estimate 3() and the true yl.

« We need a distance estimator: a loss function or a cost
function

« We need an optimization algorithm to update w and b to
minimize the loss.

Learning components

A loss function: CY038 - e topu) los o
feqonie 'O‘J Fe(oo (Os:S

An optimization algorithm:
stochvaskHe aoﬁ‘wﬂr duscert

N/é' ; inL‘V“"""m"'aﬂA“"] to devote
weihts (learve {)arem)fv/)

The distance between y and y
A gl clussifrece guest (bQWMO& 1)

3 7]
g fre oletepmr s actoel [abel
e s e doc Gd’Uﬂ“A] ()ekm)s fo

(eivw O o 13

L((“U’j} o {%sv/ JFH v o o (
loss frem e trve (2bel €

Intuition of negative log likelihood loss
= cross-entropy loss

A case of conditional maximum likelihood
estimation

We choose the parameters w,b that maximize
« the log probability

» of the true y labels in the training data

« given the observations x

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
. | .- W
Maxcvmi-ae * p(‘gl XB < 9, A ETY B " o
Since there are only 2 dlscrete od‘tcomes (O or 1) we can

express the probability p(y|x) from our classifier as:

A

Note : 1= 4, ;i/\q/)li{’r"\

\37_0) i S\Wpliﬁ“s o "21

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize: PO =y (I-9

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Minimize the cross-entropy loss

Minimize: Les(.y)= = log plglcd
== [3 (g § € (1=qdleg “'%Y.\

Lee (G9) = - [yloya@ab) +(1-9) log (1 <clicab)

Does this work for our sentiment example?

We want loss to be:
« smaller if the model estimate is close to correct

« bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)

It'sthokey . There are virtually no surprises , and the writing is
second-rate . So why was it so'.enjoyable ? For one thing, the cast
isigreat . Another nice touch is the music . | was overcome with
the urge to get off the couch and start dancing . It sucked me in,
and it'll do the same to you .

Let's see if this works for our sentiment example

W= t?ﬁ, - 6, < '?'J 05' 2/ 07] b-; O‘
X:E?IZJl)'j)O)H..?] .
True value is y=1. How well i1s our model doing?

p(+lx) =P(y=1k) = & (xx 46

> (WX +O1)

.} (0635)
o 0070

Let's see if this works for our sentiment example

True value is y=1. How well is our model doing?

p(+x)=Py=1x) = 0.7

Pretty well! What's the loss?

Leg(9,y) = = bq log § + (1-gdlog (1-3))
= - Ty logf OT) ¢ (u-%)bl\oca(1-07)7]

- D1 toqlo7y ¢ (=D LegHa7IT

= - log (0.7) = 036

What if the true label was 0?

p(+x) =P(y=1Jx) =

What if the true label was 0?

p(+l) =Py=1) =0.7
(-ld= I- ‘)C"“K)
P = 0.3

LCE()’;,)’) = = [\5(030'(0\'{%3 +(\—«3) lOﬂ(l'O'(WK-tb))]
= - L0195 + (1-0) log(1-07)]

- 103(0.3)

.3

n o\

The loss when model was right (if true y=1)

—[ylogo(w-x+b)+(1—y)log(l —o(w-x+b))]
—[logo(w-x+b)]
—log(.70)
.36

Lce(9,y)

Is lower than the loss when model was wrong (if true y=0):

Lcg(9,y) = —[ylogo(w-x+b)+(1—y)log(1—o(w-x+b))]
—[log(1—oc(w-x+b))]
—1log (.30)

— 1.2

Stochastic Gradient
Descent

Slides borrowed from Jurafsky & Martin Edition 3

Our goal: minimize the loss

Let's make explicit that the loss function is
parameterized by weights ©=(w,b)

We'll represent 5\/ as f (x; ©) to make the dependence
on 6 more obvious 4 g o Whodele parometess

: LATR 7.
We want the weights #h5t minimize the loss, averaged
over all examples:

m M‘?‘ﬂ“
é — GW%VV\';V\ V%\' 2 L(e (F (,(“3; e) LS(')
& o= T«

X (
W= I-WHWI o} (etesel i c\:‘nf‘y‘y\k\\ &(:Ee\

Intuition of gradient descent

How do | get to the bottom of this river
canyon?

Look around me 360:

Find the direction of
steepest slope down

Go that way

Our goal: minimize the loss

For logistic regression, loss function is convex
» A convex function has just one minimum

» Gradient descent starting from any point is

guaranteed to find the minimum
» (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function
Wwe COW*‘(()OSM)

Loss ! Should we move
right or left from here?

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

. W=
<6 W;Ié

Loss

one step
of gradient
descent

slope of loss at Wl//'

1S negative

So we'll move positive

Gradients

The gradient of a function of many variables
is a vector pointing in the direction of the
greatest increase in a function.

Gradient Descent: Find the gradient of the
loss function at the current point and move
in the opposite direction.

How much do we move in that direction ?

« The value of the gradient (slope in our
example) %L(f(x;w),y) weighted by a
learning rate = Wypsyromite/

» Higher learning rate means that we
make bigger adjustments to the weights

W =1 L(f (5 w),)

7 ¢ on\.,\ we W\ s
et

wer ¥

Now let's consider N dimensions

We want to know where in the N-

dimensional space (of the N parameters that
make up 0) we should move.

The gradient is just such a vector; it expresses
the directional components of the sharpest
slope along each of the N dimensions.

Imagine 2 dimensions, w and b
Cost(w,b)

Visualizing the
gradient vector
at the red point

It has two
dimensions
shown in the x-
v plane

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L is the loss function
f is a function parameterized by 0
x is the set of training inputs x(l), x(z), e x(m)
y is the set of training outputs (labels) y(l), y(z), e y(’")

0+0
repeat til done # see caption
For each training tuple (¥, y) (in random order)
1. Optional (for reportmg) # How are we doing on this tuple?
Q‘ﬂ‘m —~Compute y p() — 7£(x(D:0) # What is our estimated output ?
Compute the loss L(y (’) y)) # How far off is ${) from the true output y()?
2. g+ VoL(f(x19;0), (’)) # How should we move 0 to maximize loss?
3.0<-0 — ng # Go the other way instead
return 6

Hyperparameters

The learning rate n is a hyperparameter
> too high: the learner will take big steps and overshoot

° too low: the learner will take too long

Hyperparameters:
« Briefly, a special kind of parameter for an ML model

« Instead of being learned by algorithm from
supervision (like regular parameters), they are
chosen by algorithm designer.

How much do we move in that direction ?

« The value of the gradient (slope in our
example) %L(f(x;w),y) weighted by a
learning rate n

» Higher learning rate means that we
make bigger adjustments to the weights

141 d

W =w — W%L(f(x;W)J)

Partial Derivative for Logistic Regression

Cross-Entropy Lce(9,y) = —[ylogo(w-x+b)+(1—y)log(l—o(w-x+b))]

Loss ; ChanRue : QP _du J,\l]
Weight Update w'*l =y —q — L(f(x;w),y) eff}f—\)(\l(x)) N N H

Derivative g L (¢ «6).) _) - L‘; |0‘LU(W“{,3¢ ““‘D‘“‘l("("‘dﬁ

of Loss
ow Ow
o Oy loyluey) + OCXlgli-glunst)
S | .3@*\) ow oW
T e lwxb) Ow -9 .c)(\-ﬁ'w&ﬂ)
G(| -6(\1"““‘)3 O
v 6 e——z)sﬁ' ('2)("'6(‘2)
Desnyete © % oy - [o (wrtb)-qlx
Da,l“NO\-M GF I (<) aﬁ' > A

Partial Derivative for Logistic Regression

Cross-Entropy Loss

Lce(9,y) = —[ylogo(w-x+b)+(1—y)log(l—o(w-x+b))]
Weight Update
Wt_'_l =w ndcivL(f(x;w),y)

Derivative of Cross-Entropy Loss

R
%L(f(x;ww) = lo(w-x+b) —ylx;

Deriving cross-entropy loss for multi-label classification

Goal: maximize probability of the correct label p(y|x)

K
Lee(§,y) = —) yilog§x
k=1

Overfitting

A model that perfectly match the training data
nas a problem.

t will also overfit to the data, modeling noise

> A random word that perfectly predicts y (it happens
to only occur in one class) will get a very high weight.

> Failing to generalize to a test set without this word.

A good model should be able to generalize

Overfitting

Useful or harmless features
This movie drew me
: .. X1 ="this"
in, and it'll do the 4+ X5 — "movie
same to you. X3 = "hated"

X4 ="drew me In"

| can't tell you how

much | hated this = X5 = "the same to you"
movie. It sucked. X7 = "tell you how much"

"Memorizing" the training data can cause problems

Overfitting

4-gram model on tiny data will just memorize the data
> 100% accuracy on the training set

But it will be surprised by the novel 4-grams in the test data
o Low accuracy on test set

Models that are too powerful can overfit the data
o Fitting the details of the training data so exactly that the
model doesn't generalize well to the test set

> How to avoid overfitting?

o Regularization in logistic regression
o Dropout in neural networks

(Game

www.i-am.ai/ gradient-descent.html

