
Prof. Carolyn Anderson
Wellesley College

CS	333:		
Natural	Language	
Processing

Fall	2023

November 2nd

Neural	Language	Models

Slides adapted from Mohit Iyyer

Slides adapted from Mohit Iyyer4

p(wj |students opened their) =
count(students opened their wj)
count(students opened their)

n-gram models

Slides adapted from Mohit Iyyer

Slides adapted from Mohit Iyyer

Slides adapted from Mohit Iyyer

Title	Text

7

Problems with	n-gram	Language	Models

2/1/1813

Storage:	Need	to	store	count	
for	all	possible	n-grams.	So	
model	size	is	O(exp(n)).

Increasing	nmakes	model	size	huge!

Slides adapted from Mohit Iyyer

Title	Textanother issue:
• We treat all words / prefixes independently of

each other!

8

students opened their ___

pupils opened their ___

scholars opened their ___

undergraduates opened their ___

students turned the pages of their ___

students attentively perused their ___

…

Shouldn’t we share
information across these

semantically-similar prefixes?

Slides adapted from Mohit Iyyer

students opentheir eye

I

10

Neural Net Classification with embeddings as input features!

Issue: texts come in different sizes

This assumes a fixed size length (3)!

Some simple solutions (more sophisticated solutions later)

1. Make the input the length of the longest review
• If shorter then pad with zero embeddings

• Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same
dimensionality as a word) to represent all the words

• Take the mean of all the word embeddings

• Take the element-wise max of all the word embeddings
• For each dimension, pick the max value from all words

11

learning MEEN

J

Markov
assumption

8 tenremledding

Bagofword

Title	Textcomposing embeddings

• neural networks compose word embeddings into
vectors for phrases, sentences, and documents

 neural
network () =

opened theirstudents

Slides adapted from Mohit Iyyer

1 Compose by concatenating ten rn

2 Compose by averaging fence
input embedding

O

Title	TextPredict the next word from
composed prefix representation

 neural
network () =

opened theirstudents

predict “books”

Slides adapted from Mohit Iyyer

Title	TextHow does this happen? Let’s work our
way backwards, starting with the

prediction of the next word

17

 neural
network () =

opened theirstudents

predict “books”

Slides adapted from Mohit Iyyer

Title	TextHow does this happen? Let’s work our
way backwards, starting with the

prediction of the next word

18

 neural
network () =

opened theirstudents

predict “books”

Softmax layer:

convert a vector representation

into a probability distribution
over the entire vocabulary

Slides adapted from Mohit Iyyer

O

Title	TextA	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

19

Low-dimensional
representation of

“students opened their”

Probability distribution
over the entire

vocabulary

Slides adapted from Mohit Iyyer

Vocabulary

Title	TextA	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

20

Low-dimensional
representation of

“students opened their”

Probability distribution
over the entire

vocabulary

P(wi |vector for "students opened their")

Slides adapted from Mohit Iyyer

Title	Text

22

<0.6, 0.2, 0.1, 0.1>
books

houses
lamps

stamps

We want to get a
probability

distribution over
these four words

Let’s say our output vocabulary
consists of just four words: “books”,

“houses”, “lamps”, and “stamps”.

Low-dimensional
representation of

“students opened their”

Slides adapted from Mohit Iyyer

Gooks houses
lamp stamps

0.0 0.2 0.1 0.17

Title	Text

22

<0.6, 0.2, 0.1, 0.1>
books

houses
lamps

stamps

We want to get a
probability

distribution over
these four words

Let’s say our output vocabulary
consists of just four words: “books”,

“houses”, “lamps”, and “stamps”.

Low-dimensional
representation of

“students opened their”

Slides adapted from Mohit Iyyer

start	with	a	small	
vector	representation	
of	the	sentence	preBix

I SOFTMAX

books houses pops stamp 2IW.X 8 11.9 12.9 8.97
20.2.0.03 0.70.057

W X Idotproduit

Wite 1.2 0.30.97

tC 2.3.0.9 5.47

1.2 2.3 0.3 0.9 1.2

0.30931
10.9 5.4

we
0.2 0.4 2.2
8.9 1.9 65 bys1.8 4.5 2.2 0.1 stamps

not X Effihuman
interpretable student openedtheir

22

<0.6, 0.2, 0.1, 0.1>
books

houses
lamps

stamps

We want to get a
probability

distribution over
these four words

Let’s say our output vocabulary
consists of just four words: “books”,

“houses”, “lamps”, and “stamps”.

Low-dimensional
representation of

“students opened their”

Slides adapted from Mohit Iyyer

start	with	a	small	
vector	representation	
of	the	sentence	preBix

22

<0.6, 0.2, 0.1, 0.1>
books

houses
lamps

stamps

We want to get a
probability

distribution over
these four words

Let’s say our output vocabulary
consists of just four words: “books”,

“houses”, “lamps”, and “stamps”.

Low-dimensional
representation of

“students opened their”

Slides adapted from Mohit Iyyer

just	like	in	regression,	
we	will	learn	a	set	of	
weights

Title	Text

23

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x = Here’s an example 3-d
prefix vector

Slides adapted from Mohit Iyyer

Title	Text

24

first, we’ll project our
3-d prefix

representation to 4-d
with a matrix-vector

product

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9

0.2, 0.4, -2.2

8.9, -1.9, 6.5

4.5, 2.2, -0.1
}{W =

x =
Here’s an example 3-d

prefix vector

Slides adapted from Mohit Iyyer

Title	Text

25

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9

0.2, 0.4, -2.2

8.9, -1.9, 6.5

4.5, 2.2, -0.1
}{W =

x =

intuition: each
dimension of x

corresponds to a
feature of the prefix

Slides adapted from Mohit Iyyer

Title	Text

26

intuition: each row
of W contains

feature weights for a
corresponding word

in the vocabulary

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9

0.2, 0.4, -2.2

8.9, -1.9, 6.5

4.5, 2.2, -0.1
}{W =

x =

intuition: each
dimension of x

corresponds to a
feature of the prefix

Slides adapted from Mohit Iyyer

Title	Text

27

intuition: each row
of W contains

feature weights for a
corresponding word

in the vocabulary

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9

0.2, 0.4, -2.2

8.9, -1.9, 6.5

4.5, 2.2, -0.1
}{W =

x =

intuition: each
dimension of x

corresponds to a
feature of the prefix

boo
ks

hou
ses

lam
ps

sta
mp

s

Slides adapted from Mohit Iyyer

Title	Text

28

intuition: each row
of W contains

feature weights for a
corresponding word

in the vocabulary

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

CAUTION: we can’t
easily interpret these

features! For example,
the second dimension

of x likely does not
correspond to any
linguistic property

intuition: each
dimension of x

corresponds to a
feature of the prefix

boo
ks

hou
ses

lam
ps

sta
mp

s

Slides adapted from Mohit Iyyer

Title	Text

23

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x = Here’s an example 3-d
prefix vector

Slides adapted from Mohit Iyyer

now	we	compute	the	output	
for	this	layer	by	taking	the	
dot	product	between	x	and	W

Title	Text

31

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

Wx = <1.8, -11.9, 12.9, -8.9>
How did we compute

this? Just the dot product
of each row of W with x!

1.2 * -2.3
+ -0.3 * 0.9
+ 0.9 * 5.4

Slides adapted from Mohit Iyyer

Title	Text

32

Wx = <1.8, -11.9, 12.9, -8.9>

Okay, so how do we go
from this 4-d vector to a
probability distribution?

Slides adapted from Mohit Iyyer

32

Wx = <1.8, -11.9, 12.9, -8.9>

Okay, so how do we go
from this 4-d vector to a
probability distribution?

RESULT:

32

Wx = <1.8, -11.9, 12.9, -8.9>

Okay, so how do we go
from this 4-d vector to a
probability distribution?

RESULT:

so to sum up…

• Given a d-dimensional vector
representation x of a prefix, we do the
following to predict the next word:

1. Project it to a V-dimensional vector using a
matrix-vector product (a.k.a. a “linear layer”, or a
“feedforward layer”), where V is the size of the
vocabulary

2. Apply the softmax function to transform the
resulting vector into a probability distribution

35

So far, this is just multi-class regression on word embeddings!

Title	Text

36

Now that we know how to predict “books”,
let’s focus on how to compute the prefix

representation x in the first place!

 neural
network () =

opened theirstudents

predict “books”

36 Slides adapted from Mohit Iyyer

Title	TextComposition functions
input: sequence of word embeddings corresponding to
the tokens of a given prefix

output: single vector

• Element-wise functions
• e.g., just sum up all of the word embeddings!

• Concatenation

• Feed-forward neural networks

• Convolutional neural networks

• Recurrent neural networks

• Transformers (our focus this semester)

37 Slides adapted from Mohit Iyyer

Title	Text

Let’s look first at concatenation, an easy to
understand but limited composition function

38 Slides adapted from Mohit Iyyer

Title	Text

39

A	fixed-window	neural	Language	Model

the students opened theiras	 the	 proctor	 started	 the clock ______

discard fixed	window
2/1/1821

Slides adapted from Mohit Iyyer

it laptops

g softmax Wsh a
_M

TW3

hz ffWzh ha 000000 leno
e

Wz

Rew hittin 000000
tanh Twa
sigmoid X FEIsattar Caiczics 43 T T T T

C
Cz e e4

Title	Text

40

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1c + b1)

x = [c1; c2; c3; c4]

Slides adapted from Mohit Iyyer

Title	Text

41

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]

Slides adapted from Mohit Iyyer

Title	Text

42

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]

f is a nonlinearity, or an element-wise nonlinear function.
The most commonly-used choice today is the rectified

linear unit (ReLu), which is just ReLu(x) = max(0, x).
Other choices include tanh and sigmoid.

Slides adapted from Mohit Iyyer

Title	Text

43

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]

Slides adapted from Mohit Iyyer

43

Neural Language Model

Slides borrowed from Jurafsky & Martin Edition 3

Training	a	Fixed-Length	
Neural	Language	Model

Goal:	given	"students	open	their",	predict	"books"

Itai
T softmax hw

Din
T T T We

At
students opened

their

CI Cz 63

Key	Question:	what	are	the	parameters?

Wz pre
sofmax weights

Wa input weights

Ca Ca G word embeddings

1 randomly initialize

2 Learn weight by updating during
training

