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Neural Language Models



language model review

* Goal: compute the probability of a sentence or
sequence of words:

P(W) = P(W{,W,,W3,W,,We.. W, )

*Related task: probability of an upcoming word:

P (W5 | Wy, W;,W3,W,)

- A model that computes either of these:
P(W) or P(w,|w,,w,..w_,) 1S called a language model or LM
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n-gram models

count(students opened their w))

w: | students opened their) =
POt " ) count(students opened their)
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Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w;” never
occurred in data? Then w;
has probability 0!

count(students opened their w))

p(w; | students opened their) = _
count(students opened their)
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Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w;” never
occurred in data? Then w;
has probability O!

(Partial) Solution: Add small
» to count for every w; € V.
This is called smoothing.

count(students opened their w))

p(w;| students opened their) = _
count(students opened their)
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Problems with n-gram Language Models

Storage: Need to store count
for all possible n-grams. So
model size is O(exp(n)).

count(students opened their w;)

P(w:;|students opened their) =
(w] P ) count(students opened their)

Increasing n makes model size huge!
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another issue: Sroden qen i e

e \We treat all words / prefixes independently of
each other!

(students opened their ___ EE———

pupils opened their ___ information across these

. semantically-similar prefixes?
scholars opened their i -

|_undergraduates opened their ____
students turned the pages of their

students attentively perused their
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Neural Net Classification with embeddings as input features!

p(positive sentiment|The dessert is...)

Output layer
sigmoid

U Vixd,

masntoer (0 i) o ) 4

\\%
Projection layer % -0 00 (F® - @ -
embeddings i [ |

. o.\‘] [.. oo @ oo .‘] 3dx1
E embedding for ~ embedding for embedding for
word 534 word 23864 word 7
The dessert IS

W1 W) V3



Issue: texts come in different sizes

S

embedding for ~ embedding for embedding for
word 534 word 23864 word 7

\ | |
The dessert is

W1

moo.oo.\‘] [.. oo.oo..]

This assumes a fixed size length (3)!

L[ emlyaldim) < MacLEN
Some simple solutions (more sophisticateds

@ Make the input the length of the longest review ixroy
» If shorter then pad with zero embeddings

Truncate if you get longer reviews at test time

leon |
@ Create a single !sentencerembedding" (the ;/QmWM>

dimensionality as a word) to represent all the words
Take the mean of all the word embeddings Bac-of e/

Take the element-wise max of all the word embeddings
For each dimension, pick the max value from all words

SN wpﬁd\/)




composing embeddings

* neural networks compose word embeddings into
vectors for phrases, sentences, and documents

1 C@vm@% &ﬂ cemlram@%mj; ey n
2. Comiose by @uertgpy jon (€)

neural students opened their e M’ﬂ{}@cﬂ'mj

network ( 1 B )=
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Predict the next word fromnr
composed prefix representation

predict “books”

neural students opened their T

network ( 1 - IER

—
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How does this happen®? Let’s work our
way backwards, starting with the
porediction of the next word

predict “books”

|

R
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How does this happen®? Let’s work our
way backwards, starting with the
porediction of the next word

predict “books”

=
758
e
£
2
B
75

Softmax layer:
convert a vector representation
INto a probability distribution

over the entire vocabulary
Slides adapted from Mohit Iyyer




\[QCﬁJbUKMj

books
Probability distribution l laptops
over the entire l
vocabulary

I_ ]

< >

d Z00

I | ow-dimensional

representation of
“students opened their”
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P(w;, | vector for "students opened their")

books
Probability distribution l laptops
over the entire l
vocabulary

I_ ]

< >

d Z00

I | ow-dimensional

representation of
“students opened their”
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Let’s say our output vocabulary
consists of just four words: “books”,
“*houses”, “lamps”, and “stamps”.

hooks  Vos®> o> stEn

‘ | O 0| = We want to get a
<0602, 00,0 orobability

distribution over
these four words
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Let’s say our output vocabulary
consists of just four words: “books”,
“*houses”, “lamps”, and “stamps”.

S S ©

'O Ay

<0.6,0.2,0.1, 0.1> We want to get a
probability

distribution over

these four words
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I . ow-dimensional

start with a small representation of

vector representation “students opened their”
of the sentence prefix
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I L ow-dimensional

just like in regression, representation of
we will learn a set of “students opened their”
weights

Slides adapted from Mohit Iyyer



1.2, -0.3, 0.9

0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

X=<2309, 54>

st
Agi

Here’s an example 3-d
prefix vector

Slides adapted from Mohit Iyyer



1.2, -0.3, 0.9

0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

X=<2309, 54>

first, we’'ll project our
3-d prefix
representation to 4-d
with a matrix-vector
product

Here’s an example 3-d
prefix vector
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1.2, -0.3, 0.9

0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

X=<2309, 54>

Intuition: each
dimension of x
corresponds to a
feature of the prefix

Slides adapted from Mohit Iyyer



intuition: each row
of W contains
feature weights for a
corresponding word
In the vocabulary

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

X=<2309, 54>

Intuition: each
dimension of x
corresponds to a
feature of the prefix

Slides adapted from Mohit Iyyer



intuition: each row
of W contains
feature weights for a
corresponding word
In the vocabulary

o
12, -03, 09 Y o
0.2, 0.4, 2.2 Rxo®

8.9, -1.9, 65 [
45, 2.2, 01 4 5

X=<2309, 54>

Intuition: each
dimension of x
corresponds to a
feature of the prefix

Slides adapted from Mohit Iyyer



intuition: each row
of W contains
feature weights for a
corresponding word
In the vocabulary

1.2,
0.2,
8.9,
4.5,

00\(\6
0.3, 09 Y _eo
0.4, -2.2 x\O‘)%
1.9, 6.5 \,b@QQg

2.2, -01 4 &5

X=<2309, 54>

CAUTION: we can’t
easlly interpret these
features! For example,
the second dimension
of x likely does not
correspond to any
linguistic property

Intuition: each
dimension of x
corresponds to a
feature of the prefix
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1.2, -0.3, 0.9

0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

X=<2309, 54>

now we compute the output
for this layer by taking the
dot product between x and W

Slides adapted from Mohit Iyyer



How did we compute

Wx = <1.8,-11.9, 12.9, -8.9>  hjs? Just the dot product

1.2,
0.2,
8.9,
4.5,

of each row of W with x!
0.3, 0.9 1.27%-2.3
0.4\-2.2 +-0370.9
Mo %5 +0.9*5.4
2.2,\-0.1 J

X=<2.3009, 54>
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Okay, so how do we go
from this 4-d vector to a
probability distribution?

Wx =<1.8,-11.9, 12.9, -8.9>

Slides adapted from Mohit Iyyer



Wx =<1.8,-11.9, 12.9, -8.9>

0
RESULT: <0.6,0.2,0.1,0.1>



Wx =<1.8,-11.9, 12.9, -8.9>

0
RESULT: <0.6,0.2,0.1,0.1>



Given a d-dimensional vector
representation x of a prefix, we do the
following to predict the next word:

1. Project it to a V-dimensional vector using a
matrix-vector product (a.k.a. a “linear layer”, or a
“feedforward layer”), where V' is the size of the
vocabulary

2. Apply the softmax function to transform the
resulting vector into a probability distribution

So far, this is just multi-class regression on word embeddings!



Now that we know how to predict “books”,
let’s focus on how to compute the prefix
representation x in the first place!

neural students opened their

network ( |} 1 - IER
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Composition functions

input. sequence of word embeddings corresponding to
the tokens of a given prefix

output: single vector

¢ [Element-wise functions
* e.g., ust sum up all of the word embeddings!
e (Concatenation
e [eed-forward neural networks
e (Convolutional neural networks
e Recurrent neural networks
e Transformers
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Let’s look first at concatenation, an easy to
understand but [imited composition function

Slides adapted from Mohit Iyyer



bodss @pfo/s
A fixed-window neural Language Model ¢

% _ soffrmax (W3 hD Q"“ ﬂ77ﬂH7

hz/—:jﬁ(w?_ h ) he L%@@GD@@J fen (\)

| We
£ Rely J/L’/)E(\N(@ | 0000 000w | 3
fanh 7”“:1
Slgmoid/ X = Coop)
Jod 1 000w ap  0dp)
L, di

e —ppe——trei=  {he students  opened their
v J

. Y
discard C, fixed window Cof

C, c,
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A fixed-window neural Language Model

concatenated word embeddings

x = [cq; ¢y 035 ¢4)

words / one-hot vectors
Cl, C2, C3, C4

(0000 0000 0000 0000]

1]

the students  opened their
Cq CH C3 Cy
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A fixed-window neural Language Model

hidden layer
h = f(W,x)

concatenated word embeddings

x = [cq; ¢y 035 ¢4)

words / one-hot vectors
Cl, C2, C3, C4

(000000000000

N

W,

(0000 0000 0000 0000]

1]

the students  opened their
C 1 C 2 C 3 C 4
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A fixed-window neural Language Model

f1s a nonlinearity, or an element-wise nonlinear function.
The most commonly-used choice today is the rectified
linear unit (ReLu), which is just ReLu(x) = max(0, x).
Other choices include tanh and sigmoid.

hidden |
PR Y (e00000000000)]

h = f(W,x) "

W,
(0000 0000 0000 0000]

x = [cy; 655 €35 ¢4] T ] T ]

words / one-hot vectors the students  opened their
Cl’ Cz, C3, C4 Cl C2 C3 C4_

concatenated word embeddings
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A fixed-window neural Language Model

output distribution

y = softmax(W,h)

hidden layer
h = f(Wx)

concatenated word embeddings

x = [cq; ¢y 035 ¢4)

words / one-hot vectors
Cl, C2, C3, C4

books
laptops

[ »
(000000000000
W,

(0000 0000 0000 0000]

LT

the students  opened their
C1 Cy Cs3 Cy
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Neural Language Model

p(aardvark]...) p(fish|...)
!

I

p(for|...) p(zebral...)
!

Output layer
softmax

Projection layer

embeddings - | -

.| and thanks[ for

..T .o Crex exr) 3dX1
E embedding for ~ embedding for embedding for
word 35 word 9925 word 45180
‘1 ! 1
al the | 2 |3
Wt-3 Wt.2 Wi-1 Wi
ﬁ

Slides borrowed from Jurafsky & Martin Edition 3



Training a Fixed-Length
Neural Language Model



Goal: given "students open their”, predict "books"

AL H ock”
s

, 5@‘HW\&>( ( h [/\)ZB
[l L {h




Key Question: what are the parameters?
W, @o@vgo{—\w@x (eights
Nj}/ ; \I M\(%k W@YJWLS
| dliv1
Ca,G ¢, word ewmbeddings

A (erudemly mnielize

7. leevn weight by updRfivy Qo
J({@\/\Tl/lﬂ



