
Prof. Carolyn Anderson
Wellesley College

CS	333:	
Natural	Language	
Processing

Fall	2023

Announcements
❖ Francesca Lucchetti will be giving a guest lecture

on Tuesday.

❖ My help hours next week:

• Monday: 3:30-5

• Friday: 3:30-4:30

The	Deep	Learning	
Pipeline

The	Deep	Learning	Pipeline
Deep learning models can be run in two modes:

✦ Training: update a model’s weights to fit new data.
This is supervised learning because it requires input/
output pairs (labeled data).

✦ Inference: run data through a model to make
predictions. This requires only input data. It does not
change the model weights.

Transfer	Learning
Contemporary machine learning often involves multiple
stages of training:

✦ Pre-training: train a large model that will be used by many
downstream applications
Called a foundation model in Bommasani et al. 2021

✦ Fine-tuning: adapting a pre-trained model to a new task or
dataset by training it on new data, starting from existing
weights.

✦ Prompt Engineering: framing a task so that it can be
solved by a pretrained language model.

✦

https://arxiv.org/search/cs?searchtype=author&query=Bommasani%2C+R

Transfer	Learning
Contemporary machine learning models may also build
upon other models by freezing the weights of the
original model and taking some of its components as
input.

For instance, the weights of attention heads may be re-
used as embeddings to be fed in as input to a downstream
model.

This is called feature extraction.

This is what we did in the recipe classifier: we took attention weights from
RoBERTa to use as features in our classifier!

or representation

learning

Pretraining:
learn good
representations via
an unlabeled task.

Finetuning:
train some more on
in-domain data or
separate labeled
task

Prompt
engineering:
craft prompts that
disguise task of
interest as a language
generation problem.

Representation
learning:
extract attention
features and use as
input features to
another model

Few-shot	learning

Zero-shot	learning

Q/A

Google	Search

Code	generation

Coreference	resolution
Translation

ClassiCication

Summarization

Style	Transfer

Image	Captioning

Poem	generation

Story	generation

language modeling

The	Recent	Past

Welcome	to	Sesame	Street

Devlin et al. 2019

BERT: Bidirectional Encoder
Representations for Transformers

Slides adapted from UMass CS 490A

Why BERT?

It’s an early one!

Slides adapted from UMass CS 490A

Why BERT?

Highly influential!

Slides adapted from UMass CS 490A

Sentiment Analysis

Circa 20B.it RNNsonlabelddatasets
issues

World knowledge

Syntax
Semantics

from not very much data expensive

Circa 2017 what if we could reuse a

language model for downstream tasks

Idea language modeling is cheap Whynot learn
first from an LM

ELMI 2018

1 Pretrain an RNN LM on

lotsofdata.liKi Ee 2 unidirectional

If FYI FYI froalnnig
2 Freeze the LM weights and reuse the

hidden states a s input to anothermodel

sentiment Model POS NEG

T T
IT 0111

BIRTIY.IMformer

LM trained on a ton of data

Two training objectives

1 Masked language modeling

2 Next sentence prediction

maskedlanguagemodelinginput.ca
sequence where some words

are randomly masked

MASK
Goal predict the identity of masted token

OFTMA
opened

40 it
Ñ nr

students
TASK Their Tooks

s.LT IiE compute cross entropy loss

but only for masked

out
care

50mm
opened token

0

farmer
Backprop updates

to all weights

cassthnt asks
thattook not just the

masked embeddings

why stop at 1 MASK

You can actually mask upto 40

Nextsentenepredictionlnputi.CC
LS the man MASKS to

store SEP he bought a

gallon of MASK SEP

predict Is Next or NotNext

from the CLS embedding

I Finetning

to
farmers
are update

BERTD to specialize
in sentimen

analysis

CLS this movie sucks

Fine tune For sentence Classification

Pre-Training vs. Fine-Tuning

Devlin et al. 2019

Slides adapted from UMass CS 490A

Same internal architecture

Devlin et al. 2019

Slides adapted from UMass CS 490A

Different output layers & loss functions

Devlin et al. 2019

Slides adapted from UMass CS 490A

Pre-Training BERT Tasks

(1) Masked Language Model

(2) Next Sentence Prediction

Devlin et al. 2019

Slides adapted from UMass CS 490A

Masked Language Model

Setting: Randomly mask some tokens of the input

Objective: Predict the original word types of each masked
token based solely on its context

Slides adapted from UMass CS 490A

Masked Language Model Procedure

Apply procedure to 15% of tokens

• 80% of the time: Replace the word with the [MASK] token

• 10% of the time: Replace the word with a random word

• 10% of the time: Keep the word unchanged

Devlin et al. 2019

Slides adapted from UMass CS 490A

Masked Language Model Procedure

Example: my dog is hairy

• 80% of the time: Replace the word with the [MASK] token
my dog is [MASK]

• 10% of the time: Replace the word with a random word
my dog is apple

• 10% of the time: Keep the word unchanged
my dog is hairy

Devlin et al. 2019

Slides adapted from UMass CS 490A

Masked Language Model Procedure

Example: my dog is hairy

• 80% of the time: Replace the word with the [MASK] token
my dog is [MASK]

• 10% of the time: Replace the word with a random word
my dog is apple

• 10% of the time: Keep the word unchanged
my dog is hairy

Devlin et al. 2019

Bidirectional language modeling

Slides adapted from UMass CS 490A

Masked Language Model Procedure

Example: my dog is hairy

• 80% of the time: Replace the word with the [MASK] token
my dog is [MASK]

• 10% of the time: Replace the word with a random word
my dog is apple

• 10% of the time: Keep the word unchanged
my dog is hairy

Devlin et al. 2019

Bidirectional language modeling

Mitigate mismatch between
pre-training & fine-tuning

Slides adapted from UMass CS 490A

Pre-Training BERT: MLM

Idea: Predict vocab ID of masked tokens from final
embeddings

Devlin et al. 2019

Slides adapted from UMass CS 490A

Pre-Training BERT: NSP

Idea: Predict whether sentence B follows sentence A using the
final embedding of the [CLS] token

Devlin et al. 2019

Slides adapted from UMass CS 490A

Fine-Tuning

Use pre-trained model parameters for initialization
Change pre-training output layers of BERT to suit task

Devlin et al. 2019

Slides adapted from UMass CS 490A

Fine-Tuning

Sentence Pair
Classification

Single Sentence
Classification

Question
Answering

Single Sentence
Tagging

Devlin et al. 2019

Slides adapted from UMass CS 490A

Fine-Tuning: Sentence Pair Classification

Devlin et al. 2019

Slides adapted from UMass CS 490A

Fine-Tuning: Single Sentence Classification

Devlin et al. 2019

Slides adapted from UMass CS 490A

Fine-Tuning: Question Answering

Devlin et al. 2019

Slides adapted from UMass CS 490A

Fine-Tuning: Single Sentence Tagging

Devlin et al. 2019

Slides adapted from UMass CS 490A

CoLA = Corpus of Linguistic Acceptability

Huge gains for many tasks!
GLUE Results

Devlin et al. 2019; Warstadt et al. 2019

Slides adapted from UMass CS 490A

Huge gains for many tasks!
Coreference Resolution

From slide of Bamman (2021)

“I voted for Nader because he was most aligned with
my values,” she said.

Slides adapted from UMass CS 490A

Pretraining:
learn good
representations via
an unlabeled task.

Finetuning:
train some more on
in-domain data or
separate labeled
task

Prompt
engineering:
craft prompts that
disguise task of
interest as a language
generation problem.

Representation
learning:
extract attention
features and use as
input features to
another model

Prompt	Engineering	

Chain-of-Thought	Reasoning
One idea is to make the model generate reasoning before
an answer. This guarantees that the answer is conditioned
on the reasoning. Some people think this could improve
the quality of the answer. However, other work has shown
that the answer is not always consistent with the given
reasoning.

What	Are	Prompts	Really	Doing?

Results from Webson & Pavlick (2022)

Does	CoT	Help?

Does	CoT	Help?

Maybe not?

Continuous	Prompting
Humans write discrete prompts, which are then turned
into text embeddings.
What if we tried to directly learn good text embeddings?

