
Understanding
Collections of Text

How do we start to talk about language?

 In our first class, I talked about language as linguists
think about it: through the lens of levels of linguistic
abstraction.

 When we handle raw text, though, those layers
aren't always easy to pull apart.
 How can we describe text data? How can we start
to process it?

What can we find in a corpus of text?

 At the most basic level, a corpus is a collection of
characters.
 Whether or not words are "real", though, they are
a useful abstraction. How do we find them?

What are the words?

 "I do uh main- mainly business data processing"
◦ Fragments, filled pauses

 "Seuss’s cat in the hat is different from other cats!"
◦ Lemma: same stem, part of speech, rough word sense
◦ cat and cats = same lemma

◦ Wordform: the full inflected surface form
◦ cat and cats = different wordforms

How many words in a sentence?

they lay back on the San Francisco grass and looked at the stars
and their

 Type: an element of the vocabulary.
 Token: an instance of that type in running text.
 How many?

◦ 15 tokens (or 14)
◦ 13 types (or 12) (or 11?)

I 2

tokens token12

15 tokens
13 types

How many words in a corpus?
N = number of tokens
V = vocabulary = set of types, |V| is size of vocabulary
Heaps Law = Herdan's Law = |V| = kNβ where often .67 < β < .75
i.e., vocabulary size grows with > square root of the number of word tokens

Tokens = N Types = |V|
Switchboard phone conversations 2.4 million 20 thousand
Shakespeare 884,000 31 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13+ million

Corpora

Words don't appear out of nowhere!
A text is produced by
• a specific writer(s),
• at a specific time,
• in a specific variety,
• of a specific language,
• for a specific function.

Corpora vary along many dimensions:
◦ Language: 7000+ languages in the world
◦ Variety, like African American Language varieties.

◦ AAE Twitter posts might include forms like "iont" (I don't)
◦ Code switching, e.g., Spanish/English, Hindi/English:

 S/E: Por primera vez veo a @username actually being hateful! It was beautiful:)
 [For the first time I get to see @username actually being hateful! it was beautiful:)]
 H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe
 [“he was and will remain a friend ... don’t worry ... but have faith”]

◦ Genre: newswire, fiction, scientific articles, Wikipedia
◦ Author Demographics: writer's age, gender, ethnicity, SES

Corpus datasheets
Motivation:
• Why was the corpus collected?
• By whom?
• Who funded it?

Situation: In what situation was the text written?
Collection process: Was there consent? Pre-processing?
 Annotation process, language variety, demographics, etc.

Basic Text
Processing

 Word tokenization

Text Normalization

 Every NLP task requires text normalization:
1. Tokenizing (segmenting) words
2. Normalizing word formats
3. Segmenting sentences

Space-based tokenization

 A very simple way to tokenize: split on spaces
 Caveat: this only works for languages that use space
characters between words!

 "I write this sitting in the kitchen sink" --->
 "I" "write" "this" "sitting" "in" "the" "kitchen" "sink"

Issues in Tokenization
 Can't just blindly remove punctuation:

◦ m.p.h., Ph.D., AT&T, cap’n
◦ prices ($45.55)
◦ dates (01/02/06)
◦ URLs (http://www.stanford.edu)
◦ hashtags (#nlproc)
◦ email addresses (someone@cs.colorado.edu)

 Clitic: a word that doesn't stand on its own
◦ "are" in we're, French "je" in j'ai, "le" in l'honneur

 When should multiword expressions (MWE) be words?
◦ New York, rock ’n’ roll

Tokenization in languages without spaces

Even bigger problem: many languages (like Chinese,
Japanese, Thai) don't use spaces to separate words.

How can we figure out word boundaries in these
languages?

Word tokenization in Chinese
Chinese words are composed of characters called "hanzi" (or
sometimes just "zi")
Each character represents a meaning unit called a morpheme.
A morpheme is the smallest meaning-bearing unit of a
language.
• unlikeliest has 3 morphemes un-, likely, and -es.

Chinese words have, on average, 2.4 characters. But deciding
what counts as a word is complex and not agreed upon.

How to do word tokenization in Chinese?

 বกᬰف௛٬ᩦ “Yao Ming reaches the finals”

 3 words?
 বก ᬰف ௛٬ᩦ
 YaoMing reaches finals

 5 words?
 ব ก ᬰف ௛ ٬ᩦ
 Yao Ming reaches overall finals

 7 characters? (don't use words at all):
 ব ก ᬰ ف ௛ ٬ ᩦ
 Yao Ming enter enter overall decision game

How to do word tokenization in Chinese?

 বกᬰف௛٬ᩦ “Yao Ming reaches the finals”

 3 words?
 বก ᬰف ௛٬ᩦ
 YaoMing reaches finals

 5 words?

 ব ก ᬰف ௛ ٬ᩦ
 Yao Ming reaches overall finals

 7 characters? (don't use words at all):

 ব ก ᬰ ف ௛ ٬ ᩦ
 Yao Ming enter enter overall decision game

How to do word tokenization in Chinese?

 বกᬰف௛٬ᩦ “Yao Ming reaches the finals”

 3 words?
 বก ᬰف ௛٬ᩦ
 YaoMing reaches finals

 5 words?
 ব ก ᬰف ௛ ٬ᩦ
 Yao Ming reaches overall finals

 7 characters? (don't use words at all):
 ব ก ᬰ ف ௛ ٬ ᩦ
 Yao Ming enter enter overall decision game

How to do word tokenization in Chinese?
 বกᬰف௛٬ᩦ “Yao Ming reaches the finals”

 3 words?
 বก ᬰف ௛٬ᩦ
 YaoMing reaches finals

 5 words?
 ব ก ᬰف ௛ ٬ᩦ
 Yao Ming reaches overall finals

 7 characters? (don't use words at all):
 ব ก ᬰ ف ௛ ٬ ᩦ
 Yao Ming enter enter overall decision game

this is what linguists do, with a standardized set of glossing conventions (Leipzig rules)

Word tokenization / segmentation

In Chinese it's common to just treat each character as a token.
This makes the segmentation step is simple.

In other languages (like Thai and Japanese), more complex word
segmentation is required.
• The standard algorithms are neural sequence models trained

by supervised machine learning.

Words and
Frequency

Zipf's Law

Zipfian hypotheses

Zipf’s law: The frequency of a word is inversely
proportional to its frequency ranking.

Zipf’s hypothesis:
Shorter words are more frequent because languages
maximize efficiency: they assign common meanings
to words that take less effort to produce.

Last class:

This class:

Zipf's Law
The frequency of a word is proportional to the inverse of its rank.

Fir 2 a
where r is the frequency 3 is

rank ofthe word
4 in

n n n

fin
tithe

8 1

Zipf's Law Piantadosi (2014)

Here, frequency and
frequency rank are
calculated on two
separate halves of the
American National
Corpus.

Proposed explanations for Zipf's Law
• Semantics: there are cross-linguistically stable relationships

between frequency and meaning.

water
hand
sun
moon

Counter: Zipf's Law holds within domains

Power law frequencies for number words (“one,” “two,” “three,” etc.) in
English (a), Russian (b), and Italian (c), taken from Piantadosi (2014)

Plus: Zipf's Law holds in artificial languages

Proposed explanations for Zipf's Law
• Memory: since Zipf's Law holds in artificial language learning

experiments, maybe it is due to constraints on human
memory

Zipf's Law holds for other human systems

• Distribution of instructions in computer architecture
• Token sequences in programming languages
• Music

Complications Piantadosi (2014)

Some regularities in
differences between
predicted frequency and
actual frequency.

Basic Text
Processing

Byte Pair Encoding

Another option for text tokenization
Instead of
• white-space segmentation
• single-character segmentation

Use the data to tell us how to tokenize.

Subword tokenization (because tokens can be parts
of words as well as whole words)

Subword tokenization

 Three common algorithms:
◦ Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
◦ Unigram language modeling tokenization (Kudo, 2018)
◦ WordPiece (Schuster and Nakajima, 2012)

 All have 2 parts:
◦ A token learner that takes a raw training corpus and induces

a vocabulary (a set of tokens).
◦ A token segmenter that takes a raw test sentence and

tokenizes it according to that vocabulary

Byte Pair Encoding (BPE) token learner

Let vocabulary be the set of all individual characters
 = {A, B, C, D,…, a, b, c, d….}
 Repeat:

◦ Choose the two symbols that are most frequently
adjacent in the training corpus (say 'A', 'B')

◦ Add a new merged symbol 'AB' to the vocabulary
◦ Replace every adjacent 'A' 'B' in the corpus with 'AB'.

 Until k merges have been done.

BPE token learner algorithm

Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside space-
separated tokens.
So we commonly first add a special end-of-word
symbol '__' before space in training corpus
Next, separate into letters.

BPE token learner
Original (very fascinating!) corpus:

low low low low low lowest lowest newer newer newer
newer newer newer wider wider wider new new

Add end-of-word tokens, resulting in this vocabulary:

representation10 7 er 9
W

ow y
wer G er

er t
ne S

BPE token learner

Merge e r to er:

Merge er _ to er_:

BPE token learner

Merge n e to ne:

BPE token learner

What is the next merge?

BPE token learner

Next merges:

BPE token learner

BPE token segmenter algorithm
On the test data, run each merge learned from the
training data:

◦ Greedily
◦ In the order we learned them
◦ (test frequencies don't play a role)

So: merge every e r to er, then merge er _ to er_, etc.
 Result:

◦ Test set "n e w e r _" would be tokenized as a full word
◦ Test set "l o w e r _" would be two tokens: "low er_"

Properties of BPE tokens

Usually include frequent word and frequent subwords
• Tokens often morphemes like -est or –er

Basic Text
Processing

Word Normalization and
other issues

Case folding

 Applications like IR: reduce all letters to lower case
◦ Since users tend to use lower case
◦ Possible exception: upper case in mid-sentence?

◦ e.g., General Motors
◦ Fed vs. fed
◦ SAIL vs. sail

 For sentiment analysis, MT, Information extraction
◦ Case is helpful (US versus us is important)

Sentence Segmentation
!, ? mostly unambiguous but period “.” is very ambiguous

◦ Sentence boundary
◦ Abbreviations like Inc. or Dr.
◦ Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML to
classify a period as either (a) part of the word or (b) a
sentence-boundary.

◦ An abbreviation dictionary can help
Sentence segmentation can then often be done by rules
based on this tokenization.

