Introduction to N-grams

Language
Modeling

Probabilistic Language Models

Today’s goal: assign a probability to a sentence
> Machine Translation:
o P(high winds tonite) > P(large winds tonite)
> Spelling Correction

Why? > The office is about fifteen minuets from my house
. > P(about fifteen minutes from) > P(about fifteen minuets from)

> Speech Recognition
> P(l saw a van) >> P(eyes awe of an)

Probabilistic Language Modeling

Goal:

Compute the probability of a sentence or sequence of words:
P(W) = P(w;,W,,W3,W,,W....W,)

Related task: probability of an upcoming word:
P(we |w,wW,,w,,w,)

A model that computes either of these:
P(W) or Pw, [w,w,.w_,) is called a language model.

How to compute P(W)

How to compute this joint probability:

o P(its, water, is, so, transparent, that)

Intuition: rely on the Chain Rule of Probability

Reminder: The Chain Rule

Recall the definition of conditional probabilities
p(B|A)= Rewriting: P(A,B)= ©(AD PIR IA)

p(A,l%) Py oty %o 6 = POEY POX, 16D P (610,50 .
/P(/A\ P U k)

Reminder: The Chain Rule

Recall the definition of conditional probabilities
o(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

The Chain Rule in General

The Chain Rule applied to compute joint probability of words in
sentence W jpositian &

Y
?(\N‘\Nq_- ..Wv,) = TP(W' | W,w, "’W?—o)

Ilgmwz...wn)=nP(W, \ﬁWz---W,-_L

c—-—'
P(“its water is so transparent”) = | P(W-, 1w, Wi)

WA Wg !
- P[ﬁsB ?(v»"’"'*" ;K\ ot = P(m::'&s) F(H{w“"' W = "“5)
P (hrongrred LTt WtV IS S0 EP e = 10w, EHS L g zeter)
p L

=30l wy =, Wa A W3 1S)
P (V'@:‘HWNM l ¥ :—:(-S/ Wy - M—q/ W3 :{glo\"(:%)

How to estimate these probabilities

Could we just count and divide?
ds7

P(the |its water is so transparent that) =

Count(its water is so transparent that the)

Count(its water 1s so transparent that)

Moximun Likebhe) Eshivimetes

How to estimate these probabilities

Could we just count and divide?

P(the |its water is so transparent that) =

Count(its water is so transparent that the)

Count(its water 1s so transparent that)

No! Too many possible sentences!
We'll never see enough data for estimating these

Markov Assumption

Simplifying assumption:

b'ac@m 2 werds
ARl

P(the |its water ransparent that) P(the |that)
—1 ‘\’VVO}

/\f\ rey\
\/v\o&e('- Bwerd u\ﬂ

Markov Assumption

Approximate each component in the product:

Poww,... w,) =~ [[P, | Wy W)

Simplest case: Unigram model

Ptww,...w,) = [[Pw)

Some automatically generated sentences from a unigram model

fifth, an, of, futures, the, an, incorporated, a,
a, the, inflation, most, dollars, quarter, in, 1is,
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Bigram model

Condition on the previous word:
P(wi | wiwsz ... wi1) = P(wi | wi)
texaco, rose, one, in, this, issue, 1s, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

N-gram models

We can extend to trigrams, 4-grams, 5-grams

In general this is an insufficient model of language
> because language has long-distance dependencies:

“The computer which | had just put into the machine room
on the fifth floor crashed.”

But we can often get away with N-gram models

Estimating N-gram
Probabilities

Language
Modeling

How do we get probabilities?

P(wi | wiwa ... wii1) =P(wi | wii)

From obser omy Prequencier 1 @ ermwg CatPOS

Estimating bigram probabilities
The Maximum Likelihood Estimate

Cowx\—(W;-a, \ND
Aw, [w_)= oot iy)

c (wi, W)

P(VVI | Vvi—l) = C(Wi'|)

An example

<s>|am Sam </s>
P(w. |w_)= AW,.,, W) <s>Sam | am </s>

C(Vvi—l) <s> | do not like green eggs and ham </s>

PSles7) = 0,2?:.(73 - 1/3 Plom | T = 75

o (Semiesn) = L o (dol) = /5
3

More examples:
Berkeley Restaurant Project sentences

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’'m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available
i'm looking for a good place to eat breakfast

when is caffe venezia open during the day

Raw bigram counts

Out of 9222 sentences

Wy

We
1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram probabilities

Result:

C (Eoent)
. . plvent |33 = 7S
Normalize by unigrams:
1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food | lunch | spend
o osgo ooso o o (0003
want 0022 |0 0.66 | 0.0011| 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | O 0.0017 | 0.28 0.00083 | O 0.0025 | 0.087
eat 0 0 0.0027 | 0 0.021 0.002710.056 | 0O
chinese || 0.0063 | 0 0 0 0 0.52 10.0063|0
food 0.014 |0 0.014 |0 0.00092 | 0.0037 | O 0
lunch || 0.0059 |0 0 0 0 0.0029 | O 0
spend || 0.0036 | O 0.0036 | 0 0 0 0 0

Bigram estimates of sentence probabilities

P(<s> | want english food </s>) = 9(| 1257)

Y&? [ponr| DY = O.33
(essih| yont) =

P(]CO()O(lw»])mq\:
P (4/S> ({OOJ)
= 0-0000 3!

What kinds of knowledge?

P(english|want) =.0011
P(chinese | want) = .0065
P(to|want) = .66

P(eat | to) =.28

P(food | to) =0

P(want | spend) =0

P (i | <s>) =.25

Practical Issues

When programming, we will handle
probabilities in log space to avoid underflow.
(This will be true for the rest of the class!)

log(p x P, x Py x ;) = log py +log p, +log p; +log p,

Google N-Gram Release, August 2006

All Our N-gram are Belong to You

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

That's why we decided to sh;are fhis enormous dataset -with everyone. We prbcess:ed 1.024,908,267.?29 -words
of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40
times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.

Google N-Gram Release

serve as the incoming 92

serve as the incubator 99
serve as the independent 794
serve as the index 223

serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Smoothing: Add-one
(Laplace) smoothing

Language
Modeling

ne intuition of smoothing (from Dan Klein)

When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

attack
man
outcome

7 total
Steal probability mass to generalize better

allegations

reports l

attack
man
outcome

Add-one estimation

Also called Laplace smoothing
Pretend we saw each word one more time than we did
Just add one to all the counts!

AW, W)
aAw.,)

C(W;,. ; +
Add-1 estimate: @wﬂ, (W" \ ““"'4)‘ — 2
C(V\,]—l)“‘ V

MLE estimate: FuewW |w_)=

V= siz¢ of \)Oc@bulalj

Maximum Likelihood Estimates

The maximum likelihood estimate
o of some parameter of a model M from a training set T
o maximizes the likelihood of the training set T given the model M

Suppose the word “bagel” occurs 400 times in a corpus of a million words
What is the probability that a random word from some other text will be “bagel”?
MLE estimate:

This may be a bad estimate for some other corpus

o Butitis the estimate that makes it most likely that “bagel” will occur 400 times in a
million word corpus.

Maximum Likelihood Estimates

The maximum likelihood estimate
o of some parameter of a model M from a training set T
o maximizes the likelihood of the training set T given the model M

Suppose the word “bagel” occurs 400 times in a corpus of a million words
What is the probability that a random word from some other text will be “bagel”?
MLE estimate is 400/1,000,000 = .0004

This may be a bad estimate for some other corpus

o Butitis the estimate that makes it most likely that “bagel” will occur 400 times in a
million word corpus.

Berkeley Restaurant Corpus:

Laplace smoothed bigram counts

1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 | 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Laplace-smoothed bigrams

p B C(wp—1wp) + 1
(Wn ‘Wn—l) —
C (Wn—1) +V

1 want to eat chinese food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079(0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056(0.0011 0.00056| 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058 | 0.00058 | 0.00058| 0.00058| 0.00058

Reconstituted counts

A L4 A N T N

[C(Wn—lwn) + 1] X C(Wn—l)

c” (Wn—lwn) —

C(Wn—l) +V

1 want to eat chinese | food| lunch| spend
1 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Compare with raw bigram counts

1 want | to eat chinese | food | lunch | spend

1 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 | 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15| 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

1 want to eat chinese | food| Ilunch| spend

1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34] 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38] 0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16| 0.16 0.16

Add-1 estimation is a blunt instrument

So add-1 isn’t used for N-grams:
o We'll see better methods

But add-1 is used to smooth other NLP models
o For text classification

> |n domains where the number of zeros isn’t so huge.

Interpolation, Backoff, and

Langque Web-Scale LMs
Modeling

Backoff and Interpolation

Sometimes it helps to use less context
o Condition on less context for contexts you haven’t learned much about

Backoff:

o use trigram if you have good evidence,
o otherwise bigram, otherwise unigram

Interpolation:
° mix unigram, bigram, trigram

Interpolation works better

Linear Interpolation

Simple interpolation: estimate the trigram probabilities by
mixing unigram, bigram, and trigram probabilities.

P(wulwp_oawn_1) = MP(w,)
+A2P(Wn|Wn—1) Zli =1
+A3P(Wn |w,,_2w,,_1) l

Linear Interpolation

Simple interpolation: estimate the trigram probabilities by
mixing unigram, bigram, and trigram probabilities.

P(wulwp_oawn_1) = MP(w,)

+A«2P(Wn |Wn—1)

S a-

+;L3P(Wn |wn—2wn—1)

Let's set arbitrary weights: A, =0.4

r---1

i want to eat . !

i 5 827 0 9 11200 1
[| [|

want 2 0 608 1 1900 1
to 2 0 4 686 :930 :
eat 0 0 2 0 139]
----------------- H B N N |l = = = i - O . ﬂ
i 1200 900 930 39 . .

7\.2= 0.6
p(want|i) =

Linear Interpolation

Simple interpolation: estimate the trigram probabilities by
mixing unigram, bigram, and trigram probabilities.

P(wulwp_oawn_1) = MP(w,)

+A«2P(Wn |Wn—1)

S a-

+;L3P(Wn |wn—2wn—1)

Let's set arbitrary weights: A, =0.4

r---1

i want to eat . !

i 5 827 0 9 11200 1
[| [|

want 2 0 608 1 1900 1
to 2 0 4 686 :930 :
eat 0 0 2 0 139]
----------------- H B N N |l = = = i - O . ﬂ
i 1200 900 930 39 . .

7&2 = 0.6
p(want|to) =

Linear Interpolation

Simple interpolation: estimate the trigram probabilities by
mixing unigram, bigram, and trigram probabilities.

P(wulwp_oawn_1) = MP(w,)
2P (Wl Wn_1) Zli =1
+A3P(Wy,|Wyowy_1) l
Lambdas conditional on context:

P(W,,‘W,,_zw,,_l) — }‘ (::_%)P(Wnlwn—an—l)

Ao (w Z %)P(Wnlwn—l)
"‘7" (w))P(Wn)

How to set the lambdas?

Use a held-out corpus

. Held-Out Test

Choose As to maximize the probability of held-out data:
> Fix the N-gram probabilities (on the training data)
> Then search for As that give largest probability to held-out set:

log AW,...w, | M(A,...M)) = Elog PM(xl...xk)(Wi W)

Unknown words: Open versus closed vocabulary tasks

If we know all the words in advanced
> Vocabulary V is fixed

o Closed vocabulary task

Often we don’t know this
o Qut Of Vocabulary = OOV words

o Open vocabulary task

Instead: create an unknown word token <UNK>
o Training of <UNK> probabilities
o Create a fixed lexicon L of size V
° At text normalization phase, any training word not in L changed to <UNK>
> Now we train its probabilities like a normal word
° At decoding time
o |If text input: Use UNK probabilities for any word not in training

Huge web-scale n-grams

How to deal with, e.g., Google N-gram corpus

Pruning

> Only store N-grams with count > threshold.
° Remove singletons of higher-order n-grams

o Entropy-based pruning

Efficiency
o Efficient data structures like tries

> Bloom filters: approximate language models

o Store words as indexes, not strings
o Use Huffman coding to fit large numbers of words into two bytes
o Quantize probabilities (4-8 bits instead of 8-byte float)

Smoothing for Web-scale N-grams

“Stupid backoff” (Brants et al. 2007)
No discounting, just use relative frequencies

count(w/,,)
aW/ | Vl/ijﬁl = Count(k+1)
048w |w.,,) otherwise

if count(w,_,,,)>0

count(W)
N

Sw) =

N-gram Smoothing Summary

Add-1 smoothing:

> OK for text categorization, not for language modeling

The most commonly used method:

o Extended Interpolated Kneser-Ney (Intuition: instead of
asking “How likely is w?”, ask “How likely is w to appear
as a novel continuation?

For very large N-grams like the Web:
o Stupid backoff

