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Multinomial Naive Bayes Classifier

cMAP = argmax
c∈C

P(x1, x2,…, xn | c)P(c)

cNB = argmax
c∈C

P(cj ) P(x | c)
x∈X
∏

prior likelihood



Multinomial Naive Bayes:  
              Independence Assumptions

Bag of Words assumption: Assume position doesn’t matter 
Conditional Independence: Assume the feature 
probabilities P(xi|cj) are independent given the class c.

P(x1, x2,…, xn | c)

P(x1,…, xn | c) = P(x1 | c)•P(x2 | c)•P(x3 | c)•...•P(xn | c)



Summary: Naive Bayes is Not So Naive
Very Fast, low storage requirements 
Work well with very small amounts of training data 
Robust to Irrelevant Features 

 Irrelevant Features cancel each other without affecting results 
Very good in domains with many equally important features 

 Decision Trees suffer from fragmentation in such cases – especially if little data 
Optimal if the independence assumptions hold: If assumed 

independence is correct, then it is the Bayes Optimal Classifier for problem 
A good dependable baseline for text classification 

◦ But we will see other classifiers that give better accuracy
Slide from Chris Manning
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 Precision, Recall, and F-measure



Evaluation

Consider a binary text classification task: 
Is this passage from a book a "smell experience" or not? 



Evaluation
Consider a binary text classification task: 
Is this passage from a book a "smell experience" or not? 
You build a "smell" detector 

◦ Positive class: paragraph that involves a smell experience 
◦ Negative class: all other paragraphs



The 2-by-2 confusion matrix
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The 2-by-2 confusion matrix



Evaluation: Accuracy

Why don't we use accuracy as our metric? 
Imagine we saw 1 million paragraphs 

◦ 100 of them mention smells 
◦ 999,900 talk about something else 

We could build a classifier that labels every paragraph  
"not about smell"



Evaluation: Accuracy

Why don't we use accuracy as our metric? 
Imagine we saw 1 million paragraphs 

◦ 100 of them mention smells 
◦ 999,900 talk about something else 

We could build a classifier that labels every paragraph  
"not about smell" 

◦ It would get 99.99% accuracy!!! 
◦ But the whole point of the classifier is to help literary scholars 

find passages about smell to study--- so this is useless! 
◦ That's why we use precision and recall instead



Evaluation: Precision

% of items the system detected (i.e., items the 
system labeled as positive) that are in fact positive 
(according to the human gold labels) 

PRECISION = 
TruePositives
True positives FalsePositives
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% of items the system detected (i.e., items the 
system labeled as positive) that are in fact positive 
(according to the human gold labels) 



Evaluation: Recall

% of items actually present in the input that were 
correctly identified by the system. 

RECALL = Thepositres
True positives t FalseNegatives



Evaluation: Recall

% of items actually present in the input that were 
correctly identified by the system. 



Why Precision and recall

Our no-smells classifier 
◦ Labels nothing as "about smell" 

Accuracy = 
  

Recall =  

Precision = 

99.99
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Why Precision and recall

Our no-smells classifier 
◦ Labels nothing as "about smell" 

Accuracy=99.99% 
Precision = undefined (division by 0!) 

Recall = 0 
◦ (it doesn't get any of the 100 Pie tweets) 

Precision and recall, unlike accuracy, emphasize true 
positives: 

◦  finding the things that we are supposed to be looking for. 



A combined measure: F

F measure: a single number that combines P and R: 
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A combined measure: F

F measure: a single number that combines P and R: 

We almost always use balanced F1 (i.e., β = 1)  



A combined measure: F

F measure: a single number that combines P and R: 

We almost always use balanced F1 (i.e., β = 1)  
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Confusion Matrix for 3-class classification
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How to combine P/R from 3 classes to get one metric

Macroaveraging:  

Microaveraging: 

Compute performance for eachclass

Average over classes

Collect desisions for all classes into
oneconfusion

matrix

Compte precision recall from that table



How to combine P/R from 3 classes to get one metric

Macroaveraging:  
◦ compute the performance for each class, and then 

average over classes 
Microaveraging:  

◦ collect decisions for all classes into one confusion matrix 
◦ compute precision and recall from that table. 



Macroaveraging and Microaveraging



Macroaveraging and Microaveraging



Text 
Classification 
and Naive 
Bayes

Statistical Significance 
Testing



How can we be sure that our results generalize?

Usually: 
We care about how our system performs on data that is 
similar to the training data- not identical.



Development Test Sets and Cross-validation

Train on training set, tune on devset, report on testset 
◦ This avoids overfitting (‘training on test’) 
◦ More conservative estimate of performance 
◦ But paradox: want as much data as possible for training, and as 

much for dev; how to split?

Training set Development Test Set Test Set



Cross-validation: multiple splits
Pool results over splits, Compute pooled dev performance



How do we know if one classifier is better than another?
Given: 

◦ Classifier A and B 
◦ Metric M: M(A,x) is the performance of A on testset x 
◦ !(x): the performance difference between A, B on x: 

◦ !(x) = M(A,x) – M(B,x) 
◦ We want to know if !(x)>0, meaning A is better than B



How do we know if one classifier is better than another?
Given: 

◦ Classifier A and B 
◦ Metric M: M(A,x) is the performance of A on testset x 
◦ !(x): the performance difference between A, B on x: 

◦ !(x) = M(A,x) – M(B,x) 

◦ We want to know if !(x)>0, meaning A is better than B 
◦ !(x) is called the effect size  
◦ Suppose we look and see that !(x)  is positive. Are we done?



Statistical Hypothesis Testing
Consider two hypotheses: 

◦ Null hypothesis: A isn't better than B 
◦ A is better than B 

We want to rule out H0 

NollHypothesis
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We create a random variable X ranging over test sets 
and ask, among all these test sets, how likely are we to 
see !(x) if H0 is true?



Statistical Hypothesis Testing
Consider two hypotheses: 

◦ Null hypothesis: A isn't better than B 
◦ A is better than B 

We want to rule out H0 

We create a random variable X ranging over test sets 
and ask, among all these test sets, how likely are we to 
see !(x) if H0 is true? 
• Formalized as the p-value:



Statistical Hypothesis Testing

◦ In our example, this p-value is the probability that we would see 
δ(x) assuming H0 (=A is not better than B). 

◦ If H0 is true but δ(x) is huge, that is surprising!  Very low probability! 
◦ A small p-value means that the difference we observed is 

unlikely under the null hypothesis. We fail to find support for 
the null hypothesis.
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Statistical Hypothesis Testing

◦ In our example, this p-value is the probability that we would see 
δ(x) assuming H0 (=A is not better than B). 

◦ If H0 is true but δ(x) is huge, that is surprising!  Very low probability! 
◦ A small p-value means that the difference we observed is 

unlikely under the null hypothesis. We fail to find support for 
the null hypothesis. 

◦ Conventionally, very small means p < 0.05 or 0.01  
◦ A result(e.g., “A is better than B”) is statistically significant if 

the δ we saw has a probability that is below the threshold and 
we therefore reject this null hypothesis. 



Statistical Hypothesis Testing
◦ How do we compute this probability? 
◦ In NLP, we don't tend to use parametric tests (like t-tests) 
◦ Instead, we use non-parametric tests based on sampling: 

artificially creating many versions of the setup. 
◦ For example, suppose we had created zillions of testsets x'.



Statistical Hypothesis Testing
◦ How do we compute this probability? 
◦ In NLP, we don't tend to use parametric tests (like t-tests) 
◦ Instead, we use non-parametric tests based on sampling: 

artificially creating many versions of the setup. 
◦ For example, suppose we had created zillions of testsets x'. 

◦ Now we measure the value of !(x') on each test set 
◦ That gives us a distribution 
◦ Now set a threshold (say .01). 
◦ So if we see that in 99% of the test sets !(x) > !(x')  

◦ We conclude that our original test set delta was a real delta and not an artifact.



Statistical Hypothesis Testing

Two common approaches: 
◦ approximate randomization  
◦ bootstrap test 

Paired tests: 
◦ Comparing two sets of observations in which each observation 

in one set can be paired with an observation in another. 
◦ For example, when looking at systems A and B on the same 

test set, we can compare the performance of system A and B 
on each same observation xi
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Bootstrap test

Can apply to any metric (accuracy, precision, recall, F1). 
Bootstrap means to repeatedly draw large numbers of 
smaller samples with replacement (called bootstrap 
samples) from an original larger sample. 

Efron and Tibshirani, 1993



Bootstrap example

Consider a baby text classification example with a test 
set x of 10 documents, using accuracy as metric. 
Here are the results of systems A and B on x. 
There are 4 outcomes (A & B both right, A & B both 
wrong, A right/B wrong, A wrong/B right):

AB   AB   AB   AB   AB   AB   AB   AB   AB   AB
1      2      3      4     5      6      7     8     9     10 A% B% d()

0.7 0.5 0.2



Bootstrap example
Now we create, many, say, b=10,000 virtual test sets x(i), 
each of size n = 10.  
To make each x(i), we randomly select a cell from row x, 
with replacement, 10 times:

AB   AB   AB   AB   AB   AB   AB   AB   AB   AB
1      2      3      4     5      6      7     8     9     10 A% B% d()

0.7 0.5 0.2

AB   AB   AB   AB   AB   AB   AB   AB   AB   AB 0.6
0.6

-0.1
AB   AB   AB   AB   AB   AB   AB   AB   AB   AB 0.0

0.7
0.6



Bootstrap example
We have a distribution! We check how often A has an 
accidental advantage, to see if the original !(x) we saw 
was very common. If H0 is true, we expect !(x')=0. 



Bootstrap example
We have a distribution! We check how often A has an 
accidental advantage, to see if the original !(x) we saw 
was very common. If H0 is true, we expect !(x')=0. 

So we just count how many times the !(x') we found 
exceeds the expected 0 value by !(x)  or more:



Bootstrap example
Alas, it's slightly more complicated. 
We didn’t draw these samples from a distribution with 0 mean; we 
created them from the original test set x. What's the issue?



Bootstrap example
Alas, it's slightly more complicated. 
We didn’t draw these samples from a distribution with 0 mean; we 
created them from the original test set x, which is biased (by .20) in favor 
of A.  
To measure how surprising our observed δ(x) is, we compute the p-value 
by counting how often δ(x') exceeds the expected value of δ(x) by δ(x) or 
more: 
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◦ The resulting p-value is .0047  
◦ This is smaller than .01, indicating δ (x) is indeed 

sufficiently surprising



Bootstrap example
Suppose: 

◦ We have 10,000 test sets x(i) and a threshold of .01  
◦ In 47 of the test sets we find that δ(x(i)) ≥ 2δ(x) 
◦ The resulting p-value is .0047  
◦ This is smaller than .01, indicating δ (x) is indeed 

sufficiently surprising 
◦ We reject the null hypothesis and conclude A is better 

than B. 
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Harms in sentiment classifiers

Kiritchenko and Mohammad (2018) found that most 
sentiment classifiers assign lower sentiment and 
more negative emotion to sentences with African 
American names in them. 
This perpetuates negative stereotypes that 
associate African Americans with negative emotions 



Harms in toxicity classification

Toxicity detection is the task of detecting hate speech, 
abuse, harassment, or other kinds of toxic language 
But some toxicity classifiers incorrectly flag as being toxic 
sentences that are non-toxic but simply mention identities 
like blind people, women, or gay people. 
This could lead to censorship of discussion about these 
groups. 



What causes these harms?
Can be caused by: 

◦ Problems in the training data; machine learning systems 
are known to amplify the biases in their training data.  

◦ Problems in the human labels 
◦ Problems in the resources used (like lexicons) 
◦ Problems in model architecture (like what the model is 

trained to optimized)  
Mitigation of these harms is an open research area 


