In-class exercise: N-gram Language Models

1 Reading Data with SpaCy

This week, we’ll get to use the spaCy python library for the first time. SpaCy is designed to make it
easy to use pre-trained models to analyze very large sets of data. At the beginning of the semester,
we’ll be using spaCy as a skeleton for building our own NLP algorithms.

Install SpaCy and import it to verify that it is working.

We will use SpaCy to tokenize our text. Pause now and read about space language processing
pipelines.

For this part, we only want SpaCy to tokenize our text, so we will set the pipeline to []. Since
some of our documents will be long, but since we’re not doing any memory-intensive processing,
we will tell SpaCy that it’s okay to load large documents all at once instead of a little bit at a time.
To specify these instructions, add these lines to the top of your zipf.py file:

from spaCy.lang.en import English

nlp = English(pipeline=[], max_length=5000000)

2 Bigram analysis

Write a function called get_bigrams that takes as input a spaCy Document, and returns a list of all
of the bigrams in the document.

Write a function called get_trigrams that takes as input a spaCy Document, and returns a list of
all of the trigrams in the document.

3 Language Modeling with Trigrams

We will train our model on two novels: Emma and Persuasion. We will need to a SpaCy doc for
each text and merge them using the Doc.from_docs() function:

def make_doc(files):
docs =[]
for f in files:
with open(f,’r’, encoding="latin1’) as fn:
docs.append(nlp(fn.read()))
return Doc.from_docs(docs)


https://spacy.io/api
https://spacy.io/usage/processing-pipelines
https://spacy.io/usage/processing-pipelines

3.1 N-gram counts

Now we will need to store counts for each of the bigrams and trigrams in our text. Write a func-
tion called get_ngram_counts(docs) that takes your training doc and uses your get_unigram,
get_bigram, and get_trigram functions to calculate the n-gram counts within the training text.

3.2 Next word probability

We now have all the pieces to calculate the probability of a word given the two words that come
before it. Write a function called calc_ngram_prob. It should take a trigram, a bigram Collection,
and a trigram Collection, and it should return the probability of the trigram according to the MLE
n-gram formula:

P(Wn|wn—owy, 1) = C%Zﬁ?&;f;)

For numerical stability, we will work with log probabilities. Wrap the division term in a call to
math.log to convert it from a probability to a log probability.

You will also need to handle cases where the bigram or trigram is not in the given collection.
Return negative infinity for out of vocabulary n-grams.

3.3 Possible next words

Write a function that takes a sequence of text and returns a list of possible next words along
with their probabilities. Call it get_possible_next_words. It should take as arguments the se-
quence of text as a string, a Collection of bigrams, and a Collection of trigrams. It should use
calc_ngram_prob to calculate the probabilities of each of the candidates and return a list.

3.4 Most likely next word

Now write a function wrapper function that uses get_possible_next_words to find the most likely
next word for a sequence of text. Call this predict_next_word. It should take as arguments the
sequence of text as a string, a Collection of bigrams, and a Collection of trigrams. It should return
the most likely next word.

Check in

The most likely next word following "an agreeable" should be "manner”, with log probability -1.5
(22%).

3.5 Generating text

We can now generate text! Write a function called generate_text. It should take as arguments a
string representing the text to complete; n, a number of words to generate; a Collection of bigrams;
and a Collection of trigrams.



3.6 Generating more text

It’s boring to always generate the most likely completion. Write a function called sample_next_word.
It should be like predict_next_word, except that it returns a word from the set of candidates pro-
duces by get_possible_next_words sampled according to its probability. You can use the ran-
dom.choices function to help you sample.

Note: random.choices expects non-negative weights. Before passing in the probabilities as
weights, you will need to them back to normal probabilities using the math.exp function.

Next, augment your generate_text with an optional mode parameter. We will use mode to signal
whether we want the most likely next word (mode="top") or a word sampled according to its
probability (mode="random").



	Reading Data with SpaCy
	Bigram analysis
	Language Modeling with Trigrams
	N-gram counts
	Next word probability
	Possible next words
	Most likely next word
	Generating text
	Generating more text


