
Homework 3: N-gram Language Models
Due Sept. 25th

1 Exploring text classification with n-grams
In class, we used an n-gram language model to generate text. In this assignment, you will explore
the use of n-grams to analyze textual similarity.

You should put your code for this part in ngram_classify.py.

1.1 Reading Data with SpaCy
This week, we’ll use the spaCy Python library. SpaCy is designed to make it easy to use pre-trained
models to analyze very large sets of data.

Install SpaCy and import it to verify that it is working.

We will use SpaCy to tokenize our text. Pause now and read about space language processing
pipelines.

For this part, we only want SpaCy to tokenize our text, so we will set the pipeline to []. Since
some of our documents will be long, but since we’re not doing any memory-intensive processing,
we will tell SpaCy that it’s okay to load large documents all at once instead of a little bit at a time.
To specify these instructions, add these lines to the top of your file:

from spacy.lang.en import English

nlp = English(pipeline=[], max_length=5000000)

1.2 Extracting data from XML files (15 points)
We will look at a set of XML files containing news articles. Each article has a hyperpartisan
attribute that indicates whether is it an example of hyperpartisan news: "true" or "false". The full
data files are in semeval_full, but some are quite large. We will mostly use a subsample of this
data that is stored in semeval-sample.xml. However, it is good practice to write code that could
work on the larger dataset.

Loading the entire dataset at once is a recipe for trouble. Fortunately, the lxml library gives us a
way to iteratively parse through an xml file, dealing with one node at a time. Here’s sample code
that opens a file called myfile.xml and call a function called my_func on every article node:

from lxml import etree

fp = open("myfile.xml", "br")

1

https://spacy.io/api
https://spacy.io/usage/processing-pipelines
https://spacy.io/usage/processing-pipelines
https://lxml.de/parsing.html


for event, element in etree.iterparse(fp, tag=("article",)):
my_func(element)

element.clear()

The starter code has a generator function called do_xml_parse() that uses lxml.etree to yield one
node at a time. Look at that code and make sure you can explain how each line of it works before
you move on.

For all of the analysis in this lab, you should lowercase the tokens unless told otherwise.

Next, write a function called get_articles(args, attribute, value) that returns a Counter. get_articles
will use do_xml_parse to iterate through all of the articles in args.articles. Here is an example of
how to use do_xml_parse:

for article in do_xml_parse(args.articles, "article"):
this_value = article.get(attribute)

get_articles should then gather unigram counts for each article whose attribute attribute has the
value value. You can use the get_unigrams function we wrote in class to do this.

For example, get_articles(args, ‘hyperpartisan’, ‘true’) will call get_unigrams once for every
article whose hyperpartisan attribute is ‘true‘.

Hint: If you have an article element called article, you can access all of the text children of that
element with article.itertext().

Hint: Some of the articles contain HTML entities that are "escaped", i.e., marked with special
characters to avoid interfering with the XML parsing. You can unescape those by importing the
html module and calling html.unescape on the articles’ text before creating your SpaCy docs.

1.3 Check in
Stop now and confirm that if you call get_articles on the semeval-sample.xml file for the case
where hyperpartisan=true, you get the following counts:

the: 10631
california: 34
zero: 11

1.4 Comparing Texts (15 points)
We are interested in knowing how many of the unigrams in one category of text (e.g., hyperparti-
san=‘true’) are not in another category of text (e.g., hyperpartisan=‘false’). Over the course of
this assignment, you will explore several ways of grouping the text, so we’ll want to carefully or-
ganize our code for reusability. In the rest of this writeup, we’ll refer to the set of data we generate
counts from as the training set, and the set of data that we check for zeros using those counts as
the test set.

2



Write a function called compare(train_counter, test_counter, unique=False). The three argu-
ments to compare should be:

• train_counter: A Counter object representing counts from the training set
• test_counter: A Counter object representing counts from the test set
• unique: A boolean indicating whether to count zeros for tokens (unique=False) or types

(unique=True)

compare should return two numbers:

• The count of (tokens/types) in the test set that have a zero count in the training set *
• The total number of (tokens/types) in the test set

Confirm that if you call compare(Counter([1,2,3]), Counter([3,4,4]), unique=True) you get
(1,2), and if you call compare(Counter([1,2,3]), Counter([3,4,4]), unique=False) you get (2,3).

The given code has a function called do_experiment that calls get_articles twice (once for the
training data, once for the test data), and then prints the results from compare as a markdown
table. Read through that function now and make sure that you understand it, since you will add it
it later in the lab.

1.5 Questions (10 points)
1. What percentage of the tokens that appear in the hyperpartisan (True) articles don’t appear

in the neutral (False) articles?
2. What percentage of tokens that appear in the neutral (False) articles don’t appear in the

hyperpartisan (True) articles?
3. What if you look at types instead of tokens?
4. Are you surprised by these results? Why or why not?

1.6 Bigram analysis (5 points)
What happens when you move to higher order n-gram models like bigrams and trigrams?

You can use the get_bigrams and get_trigrams functions that we wrote in class.

Modify your get_articles function so that it returns a tuple with 3 items: a Counter of unigrams, a
Counter of bigrams, and a Counter of trigrams. Then modify do_experiment so that it generates
three table rows with statistics for not only unigram zeros, but also bigram and trigram zeros.

1.7 Questions (4 points)
Using the table generated by do_experiment, share the following percentages and analyses:

1. What percentage of the bigrams (tokens, not types) that appear in the hyperpartisan articles
don’t appear in the neutral articles? What percentage of the bigrams that appear in the neutral
articles don’t appear in the hyperpartisan articles? Are you surprised by these results? Why
or why not?

3



2. What percentage of the trigrams (tokens, not types) that appear in the hyperpartisan articles
don’t appear in the neutral articles? What percentage of the trigrams that appear in the neutral
articles don’t appear in the hyperpartisan articles? Are you surprised by these results? Why
or why not?

1.8 Balancing the Data
Instead of training on one category of articles and testing on another, suppose we break each of the
categories in half. Then we could train on half of the hyperpartisan articles and half of the neutral
articles, and test on the other half.

In the sample data you used above, each of the articles has an attribute randomchunk that assigns
it to either chunk A or chunk B.

You shouldn’t need to write much (any!) code here. Instead of calling do_experiment on the
hyperpartisan attribute, you can now call it on the randomchunk attribute.

The results here can help us calibrate our sense of how much of the effect we saw in the last part
is actually connected to the labels (instead of just a natural property of having lots of text). This
relates to a concept called a *permutation test* from statistics, a convenient way to reason about
what a statistically significant result is when you don’t have a clear indication of which probability
distribution describes the variable you’re interested in.

1.9 Questions (6 points)
Try training on randomchunk A and testing on randomchunk B. Then train on randomchunk B and
test on randomchunk A. How are your results different from the previous question? Why?

Your writeup should include a table of your results, which you can generate with your expanded
do_experiment function from above. Report percentages, not raw counts.

Evaluating a system in this way is called cross-validation: instead of having a specific "held out"
test set, you split your training data into k equal-sized parts. Each piece then has one turn being
the test set, while the other pieces are assembled together as the training set. In this case, since you
are breaking your data into k = 2 distinct test sets, you are performing 2-fold cross-validation.

2 N-gram language models, revisited
We learned this week about the problem of sparsity, or how to handle zeros in language modeling.
If you were to train a unigram language model on the fiction category of the Brown corpus and
then try to calculate the probability of generating the editorial category, you would end up with 0
probability because there are words in the editorial text that don’t appear in fiction.

In this part of the assignment, you’ll grapple with this problem in the context of using n-gram
language models to analyze textual similarity.

Place your code for this part of the assignment in the ngram_generate.py file. It already contains
the code for building a trigram language model that we wrote in class.

4



2.1 Calculating text likelihood
We can use our n-gram language model to quantify the similarity between texts in another way.
Given a language model trained on one dataset, we can calculate the perplexity of another dataset.
(We also use perplexity to evaluate language models.)

Perplexity is the inverse probability of the dataset, normalized by the number of words:

PP (W ) =

(
N∏

n=1

p(wn|wn−2wn−1)

)− 1
N

I have given you a function called calc_text_perplexity to compute perplexity. If you read the
code, you will notice that I am doing a little trick to avoid numerical stability issues: normalizing
by the length of the document before exponentiating the sum of log probabilities.

This function takes a list of file names, a Collection of bigrams, and a Collection of trigrams, and
calculates and return the perplexity of the document according to the trigram model.

Check in

Run your calc_text_perplexity on the training text. Your perplexity should be around 7.

Run your calc_text_perplexity on the austen-sense.txt file. What do you observe?

2.2 Handling out-of-vocabulary words (12 points)
The issue with calculating perplexity on texts outside of our training data is that they may contain
trigrams that are not observed during training. The resulting perplexity score doesn’t make any
sense— your script may terminate in an error, or calculate an extremely low perplexity, because
dividing 1 by negative infinity returns zero.

We will add support for out-of-vocabulary words using a very simple technique: add-1 smoothing.
For every unseen trigram in our test data, we will pretend that we saw it once during training. We
will also pretend that we saw each observed trigram once more during trigram, so that we don’t
skew things too heavily towards unseen data. (We will use the same policy with bigrams.)

Write a function called add1_smoothing. Your function should take a list of texts, a bigram
Collection, and a trigram Collection. It should process the document and extend the bigram and
trigram Collections with a count of 1 for all n-grams that occur in the test doc, but were not
already in the n-gram Collection. It should also add 1 to the counts of each existing n-gram in the
Collection.

Use your function to smooth the bigram and trigram counts from our training text with “austen-
sense.txt.”

5



Check in

If you smooth the n-grams from our original training doc with “austen-sense.txt” and compare the
counts for the first 5 bigrams for the same text before and after smoothing, you should observe
counts like the following:

ORIGINAL

("[", "emma") 1
("emma", "by") 1
("by", "jane") 3
("jane", "austen") 2
("austen", "1816") 1

SMOOTHED

("[", "emma") 2
("emma", "by") 2
("by", "jane") 4
("jane", "austen") 3
("austen", "1816") 2

Note that these counts all increased by 1 because they were previously observed in the training
data. If you check the last 4 bigrams, you will see new bigrams, which were not observed in the
training data:

("or", "producing") 1
("producing", "coolness") 1
("coolness", "between") 1
("husbands", ".") 1

These counts were set to 1, because they were not previously observed in the training data.

2.3 Questions (6 points)
Now that we have added smoothing, you can do some analysis of the Gutenberg data.

1. Of the texts that are not written by Austen, which is the most similar to the Austen training
text?

2. There are three authors with three texts apiece in the dataset: Austen, Shakespeare, and
Chesterton. Retrain your n-gram model using two of the texts per author, and test on the
held-out third text. Which author’s writing is the most consistent? Your writeup should
include details about which texts you used to train and which to test.

2.4 Generation (7 points)
Your n-gram models can be used to generate novel text, as well as to compare the similarities
between texts. You can do this using the generate_text function, which takes a string as context,
a number of words to generate, a set of bigrams, and a set of trigrams.

If you call generate_text with "a woman" and a generation length of 4, your smoothed Austen
model should generate: "the woman he had been."

Notice that if you repeat this function call, you will generate the same string every time. That’s
boring! Instead, we would like to sample from the n-gram model while favoring higher probability
completions.

6



Implement a probability-based sampler where next words are sampled according to their prob-
ability (rather than always taking the most probable next word.) Call this function sampler.

Next, modify your generate_text function so that it takes an optional argument, mode. Your
function should call predict_next_word when the mode "best" is passed, and sampler when the
mode "random" is passed.

2.5 Better Sampling (10 points)
It turns out naive sampling isn’t a very good approach for natural language, because of the large
number of improbable next words. Each of these has a tiny chance of getting selected, but the sum
of those small probabilities can still be significant.

Instead, contemporary language models often use more advanced sampling techniques. Two com-
mon techniques are top-k sampling, and top-p sampling.

Read about each of these methods in Jurafsky & Martin Chapter 8.6: https://web.stanford.edu/ ju-
rafsky/slp3/8.pdf

Choose one of these sampling methods and implement it. Name the function advanced_sampler.
Call the threshold parameter (k or p) threshold in the function signature.

Hint: you might find it easier to work with “normal” probabilities rather than log probabilities.
Feel free to exponentiate them using math.exp.

Modify your generate_text function so that supplying the mode argument "advanced" runs this
sampler.

3 Curiosity Points (10 points)
As usual, you will receive 90 points for implementing everything described above. To increase
your score further, you can extend your investigation of text classification or n-gram language
models in some way. You may also focus on extending your analysis of either system.

Please include a section in your report detailing what (if anything) you are submitting for
this section.

3.1 Submission
On Gradescope, you should submit your ngram_classify.py and ngram_generate.py files (5
points for working, non-trivial files) and your report PDF.

7

https://web.stanford.edu/~jurafsky/slp3/8.pdf
https://web.stanford.edu/~jurafsky/slp3/8.pdf

	Exploring text classification with n-grams
	Reading Data with SpaCy
	Extracting data from XML files (15 points)
	Check in
	Comparing Texts (15 points)
	Questions (10 points)
	Bigram analysis (5 points)
	Questions (4 points)
	Balancing the Data
	Questions (6 points)

	N-gram language models, revisited
	Calculating text likelihood
	Handling out-of-vocabulary words (12 points)
	Questions (6 points)
	Generation (7 points)
	Better Sampling (10 points)

	Curiosity Points (10 points)
	Submission


