Homework 4: Naive Bayes
Due October 5th

1 Working with the GoodReads dataset

In this assignment, you will build a Naive Bayes classifier for book genres. You should put your
code for this assignment in naive_bayes.py. Submit it on Gradescope along with a PDF of
your write-up.

Our dataset comes from the GoodReads book review website; it was scraped, cleaned and sorted
into genres in 2017 by researchers at UCSD.

* Romance

* Poetry

Young Adult

Children

Mystery, Thriller, and Crime
* Fantasy and Paranormal

* History and Biography

* Comics and Graphic Novels

I have provided two subsets of the original data for testing and training purposes. Each is roughly
1/20th of the original data and has been filtered by country (US) and language (English).

Training: goodreads_US_1l7sample_authors. json

Testing: goodreads_US_19sample_authors. json

1.1 Loading and Preprocessing the Data

I have given you a function called 1load_data that loads in data and processes it into a list of
dictionaries, one for each book.

As it common in NLP, these JSON files are not, in fact, proper JSON: they contain one JSON
object per line, rather than one per file. Thus, we have to iterate through the lines in the file and
call 3son. loads on each line to process it into a Python dictionary.

We will use just four of the original eight genres:

* Romance

* Young Adult

* Mystery, Thriller, and Crime
* Fantasy and Paranormal


https://github.com/MengtingWan/goodreads

I have given you a function called sort_and_filter_books. It takes a list of book dictio-
naries and a list of genres, and filters out books that do not belong to a genre in the genre list. It
returns a dictionary where the keys are genres and the values are lists of book dictionaries in that
genre.

Use these two functions to load the dataset and filter it to the four genres above.

2 Training Your Classifier

To train our Naive Bayes classifier, we need to calculate two sets of probabilities: the priors,
reflecting document frequency, and the likelihoods, reflecting word frequencies in each class.

We will work with log probabilities to avoid numerical stability issues.

2.1 Computing Priors (Spts)

The priors capture the probability of a document belonging to a given class. In our case, this is
the probability of a book belonging to a genre, all else being equal. Not all genres are equally
well-represented in our dataset. If we know nothing else about a book, we can make an educated
guess about its genre simply by guessing the most likely genre.

Write a function called compute_priors. It should take a dictionary of genre-sorted book
dictionaries. It should return a dictionary of log probabilities: the keys should be genres, and the
values should be the probability of a book belonging to that genre.

2.2 Counting Word Frequencies (Spts)

Calculating likelihoods is more involved than calculating priors. Start by writing a function called
count_words_in_ books. This function should take a list of book dictionaries and a field, a
key within the book dictionary that we will base our features upon. We will start by using the field
“title_without_series”.

Your function should iterate through the books, call the tokenize function on the field for each
book, and count how many times each token occurs across all books. It should return a Counter.

You can check that your function is working correctly by searching for an uncommon word in the
JSON file, and verifying that the count matches what your program calculates for a particular genre.
For instance, “Unicorns” appears only twice in titles in goodreads_US_17sample. json,
both times in the Young Adult category.

2.3 Genre Word Counts (Spts)

Once you are sure your count_words_in_books function is working, write a function called
make_genre_counts. This wrapper function should take a genre-sorted book dictionary and
field. It should call count_words_in_books to calculate the word counts for each genre, and
return a dictionary where the keys are genres and the values are word count dictionaries.



2.4 Building the Vocabulary (5 pts)

It is also convenient to have a list of all words in the training dataset vocabulary. Write a function
calledmake_vocab. It should take in the genre counts returned by your make_genre_counts,
and it should return a list of all words in the training dataset.

2.5 Computing Likelihoods (8pts)

You now have all the pieces assembled to calculate likelihoods.

Write a function called compute_likelihoods. It should take two arguments: your vocab-
ulary and your genre count dictionary. It should return a dictionary of log-likelihoods, keyed by
genre, with dictionaries of log-likelihoods as values.

You should follow the pseudo-code given in the Jurafsky & Martin chapter to calculate log-
likelihoods. This includes using add-1 smoothing.

Hint: it is helpful to calculate the total number of words in each genre once at the top of the
function, rather than repeatedly. I have given you a function called make_genre_sums to
help with this. It takes a genre count dictionary and a vocabulary and returns a dictionary where
the keys are genre names and the values are the total number of words in that genre.

Check in
The log-likelihoods for “Autumn” should be:

* Romance: -9.31

Young Adult: -10.33

Mystery, Thriller, Crime: -9.74
Fantasy and Paranormal: -9.02

Hint: If you are struggling to think about log-probabilities, remember that you can always convert
them back to probabilities when you print by calling math.exp().

2.6 Questions (4 pts)

Congrats! You’ve now trained your Naive Bayes classifier. Take a moment to explore your data
before you move on:

1. What are the top 5 highest-probability features for each genre?

2.7 Packaging Your Classifier

Write a function called train to package up the steps involved in training your classifier. This
function should take 3 parameters: the name of training data file, the list of genres to use, and the
field to use.



3 Testing Your Classifier

In this section, we will test out the classifier that you made.

3.1 Processing Training Data

Write a function called test. This function should take 6 parameters: the name of the test data
file; the learned priors; the learned likelihoods; a list of genres; the learned vocabulary; and a field.

We will continue adding to this function for the rest of this section. Start by adding code to load,
sort, and filter the test data. You should be able to reuse code from previous sections.

3.2 Computing Genre Probabilities (5pts)

Write a function called compute_class_scores. This function should take a single book
dictionary as an argument, along with the information you need to predict its genre: priors, likeli-
hoods, vocabulary, and field.

For each genre, it should calculate the likelihood of the book belonging to that genre. It should
store these probabilities in a dictionary indexed by genre.

To calculate the log-probability that a book belongs to a genre, you should follow the pseudo-code
given in the Jurafsky & Martin chapter.

3.3 Classifying Books (7pts)

Write a function called classify book. This function should take a book and the data need to
classify it, and should call compute_class_scores to get the log-probabilities that it belongs
to each genre.

It should extend the score dictionary with some meta-data that will be useful for analysis: the
book’s title, its author names, its field value, and its actual genre. Store the actual genre with key
‘gold’ and the field with key ‘field’.

Now write a wrapper function called classify all_books. This should simply iterate through
the genre-organized dictionary of books, call classify book on each book, and compile the
results into a list to return.

Check in

For the second book in the test set, “The Mountain Between Us”, the log-probabilities of belonging
to each genre should be as follows:

* Romance: -28.076

* Young Adult: -30.717

* Mystery, Thriller, Crime: -32.246
* Fantasy and Paranormal: -30.144



4 Evaluation

4.1 Calculating Metrics (10pts)

To understand how well our classifier is doing, we will need to implement some metrics. Write
functions to calculate two evaluation metrics, precision and recall.

Your functions should be called by _class_precision and by _class_recall. They
should take a list of results and a genre, and return the precision or recall score for predictions
within that genre.

4.2 Questions (6 pts)

* Which genre does the model do best on?
* Do you notice any relationship between precision/recall and the genre priors?

4.3 Overall Performance (Spts)

We now have a way to calculate how well the model does on particular genres. But what if we
want to compare our classifier to another model?

Write a function called macro_average_metric. Your function should calculate the macro-
average for a given metric. (See Jurafsky & Martin for a discussion of micro- and macro-averages.)

Your function should take three parameters: a list of results, a list of genres, and a metric (the name
of a function that calculates a metric). It should return the macro-average of that metric over all
genres.

4.4 Titles versus Author Names (6 pts)

So far, we have been basing our features on the book titles. But you can also train it on other fields.
Retrain and retest your model on author names (“author names”).

(If you have written your code in a modular way, this should be trivial. But if you haven’t, you
may need to do some re-factoring first.)

4.5 Questions (8 pts)

* Look at the features that have highest probability for each genre. What patterns do you see?
* How do the models trained on titles and trained on authors compare?

* Calculate the balanced F-measure for both models. Which is better?

* Which approach do you think is more likely to generalize to new data?

'Noticing weird spaces in the author names? You can read about Good Read’s sloppy way of disambiguating
names here: https://ruthtillman.com/post/conflicting-author-names-goodreads!


https://ruthtillman.com/post/conflicting-author-names-goodreads

4.6 Most Genre-typical Books (5pts)

Our classifier should be able to tell us what kinds of books are most likely to occur in each genre.
Write a function called display_top_genre_scores. This function should take three pa-
rameters: the list of results, the list of genres, and n, the number of top scores to display.

For each genre, it should sort the books by their scores and print out the n most likely books to
belong to that genre. Print both the book title and its authors.

4.7 Questions (6 pts)

* What do you observe about the books? There’s an issue with our approach. Can you spot it?

* So far we have tested the classifier only on genres we observed during training. Technically,
we could run our classifier on a test set that includes a genre not observed in training. Do
you think this would work? If so, describe how you would adapt your program to do this.

S Intellectual Curiosity (10pts)

As usual, you will receive 90 points for implementing everything described above. To increase
your score further, you can extend your investigation in some way.

Please include a section in your report detailing what (if anything) you are submitting for
this section.

5.1 Submission

On Gradescope, you should submit your naive_bayes.py file and your report PDF.



	Working with the GoodReads dataset
	Loading and Preprocessing the Data (5 pts)

	Training Your Classifier
	Computing Priors (5pts)
	Counting Word Frequencies (5pts)
	Genre Word Counts (5pts)
	Building the Vocabulary
	Computing Likelihoods (8pts)
	Questions (4 pts)
	Packaging Your Classifier

	Testing Your Classifier
	Processing Training Data
	Computing Genre Probabilities (5pts)
	Classifying Books (7pts)

	Evaluation
	Calculating Metrics (10pts)
	Questions (6 pts)
	Overall Performance (5pts)
	Titles versus Author Names (6 pts)
	Questions (8 pts)
	Most Genre-typical Books (5pts)
	Questions (6 pts)

	Intellectual Curiosity (10pts)
	Submission


