
Homework 5: Regression
Due October 23rd

1 Deep Learning Math

1.1 Computing Loss in Binary Regression
Compute the cross-entropy loss for a negative review classified as positive with a probability of
0.55 by a binary logistic regression model. Treat the positive class as class 1.

1.2 Computing Loss in Multinomial Regression
Now consider a multinomial logistic regression model with three classes: positive, negative, and
neutral. Compute the cross-entropy loss for a negative review given the following probabilities by
the model: ŷpos = 0.55, ŷneg = 0.25, and ŷneutral = 0.20.

2 Song Classification
In the second part of this assignment, we will build a regression model to classify songs by three
artists: Taylor Swift, Drake, and Beyoncé.

I have already scraped the lyrics from each of the artists’ studio albums, and split the data into two
datasets: one for testing and one for training.

2.1 Data Preprocessing
The input to our model will be a vector of numbers. For training and evaluation, we will also need
to provide a list of labels, the correct classes for each lyric. We will need to code the labels as
numbers; the starter code contains a hard-coded dictionary mapping artist names to class numbers.

Write a function called make_data. Your function should take the name of a dataset file and
the label map as arguments. It should read in the contents of the file. The song lyric should be
lower-cased and then tokenized using the tokenize function. The artist name should be mapped
to a class number.

Your function should return two lists: a nested list, where the inner lists are the result of calling
tokenize on a lyric; and a list of labels.

2.2 Computing Features
Our song data is mapped to feature representations in the compute_features function. This
function does three things: 1) it computes feature representations for songs, 2) it scales those

1



features, and 3) converts the data to a Tensor representation.

Computing features Currently, the only feature that is implemented is song length. Later, you
will add other features by adding more calls to add_feature within compute_features.
add_feature takes the current list of feature representations, the song data, a feature function,
a list of feature names, and the name of a new feature. It applies the function to each song line to
create a new feature and augments the list of feature representations and the list of feature names
to reflect this.

Scaling features Because regression fits a linear equation, there can be issues if some feature
values are much larger than others. I’ve given you code to scale features so that each feature
representation is scaled between 0 and 1.

The normalization is computed on the training dataset, and reused for the test data set. When you
call compute_features on the training data, you should save the set of norms it returns and
pass them into compute_features when you call it on the test data.

Making a tensor The machine learning library that we will use, PyTorch, requires input to the
model to be in the form of a Tensor, an n-dimensional generalization of a matrix. The function that
I’ve given you turns the list of feature representations into a list of Tensors.

Without adding any more features, add calls to main to process your testing and training datasets
using make_data and then compute_features. Make sure to save the norms returned from
processing the training data and pass them in to normalize your test data.

2.3 Data Loaders
Next, create data loaders for each dataset. You will need to zip together your features and labels
before passing them to DataLoader:
train_dataset = list(zip(train_feats,train_labels))
test_dataset = list(zip(test_feats,test_labels))

2.4 Building a Regression Model
In class, I showed how to build a regression model. You can start building your regression model
by copying over the model class that we wrote in class, plus the functions for training and testing.

Make these changes and test out your model, using only song length as a feature. It should not
perform well, but it should run without error.

3 Crafting Features
How should we turn our song lyrics into numbers? In this part of the assignment, you will do some
feature engineering. You will write functions that take song lyrics as input and output a number.
Hopefully, this number will capture something meaningful about the lyric.

2



As you construct new features, you will add more calls to add_feature in compute_features.
add_feature takes five arguments: the current list of feature representations, the song data, a
feature function, a list of feature names, and the name of a new feature. It applies the function to
each song line to create a new feature and augments the list of feature representations and the list
of feature names to reflect this.

add_feature is a higher-order function: it expects a function as its second argument.

3.1 Word Count Helper Function
To start with, write yourself a helper function for calculating average number of word occurrences.
This function should take two arguments: a lyric and a word. It should return the average number
of words in the lyric that are identical to the word.

Call this function avg_word. You can now write feature functions that are simply wrappers
around this.

3.2 Wordlist Helper Function
Write yourself another helper function. This one calculates the average number of words in the
lyric that occur in a list of search words. It should take two arguments: a lyric and a list of words.

Call this function avg_words. You can now write feature functions that are simply wrappers for
this.

3.3 Add Some Features
Add a few features using these helper functions. You should do this by adding additional calls to
add_feature into the compute_features function. Each call will take the name of your
feature construction function as its second argument.

4 Evaluation
As you add features, you may find yourself wondering how much they are really helping. We will
take a short break from feature-engineering to write some evaluation functions.

4.1 Evaluation Metrics
So far we have looked only at overall model performance. But our lyric dataset suffers from class
imbalance: there are twice as many Taylor Swift songs as Beyoncé songs.

Write a function called print_performance_by_class that prints a summary of accuracy by
category. Your function should take two parameters: a set of labels (such as test_labels) and a set
of model predictions.

Your function should print a summary like the one below. Note that I am rounding to 3 places to
make the output more readable.

3



Accuracy by Category:
Category 0 : 1.0
Category 1 : 0.0
Category 2 : 0.0

You can use the test() function as an example of how to retrieve the model predictions and
compare them to the correct labels.

4.2 How Much Does a Feature Help?
I have given you a helper function called print_coefficients. This function prints out a table of
regression weights for a given model. The columns correspond to different categories; the rows
correspond to different features.

A negative weight for a particular feature/category pair means that as the value of the feature in-
creases, the likelihood of the category decreases. A positive weight indicates a correlation (positive
linear relationship) between the feature and the category.

4.2.1 Questions

1. Use this function to analyze three of your features. What do the coefficients tell you about
how useful this feature is for predicting each artist?

2. Do you think that looking at model coefficients is sufficient for determining whether a feature
is useful? Why or why not?

5 Feature Engineering
Your main challenge is to build features that will improve model performance. You are required to
experiment with several feature formats:

• At least one feature that uses punctuation
• At least one feature that identifies words in a syntactic group: pronouns, verbs, negation

words, etc.
• At least one feature that identifies words in a semantic group: positive words, music words,

feelings, etc.
• At least one feature that uses regular expressions

To receive full credit, your model must achieve above 15% accuracy on all classes. You will receive
substantial partial credit if you achieve above 15% accuracy on two classes, and partial credit if
you meet the requirements above, but do not achieve above 15% accuracy on more than one class.

Note: you should NOT base your features on what you observe in the test data. We use a
separate test set so that we can evaluate how well our model generalizes to unseen data— if
you peek at the test dataset while feature-building, it lets our model cheat!

4



5.1 Questions
1. Describe the features you have constructed. How did you decide on them?
2. Which features did you find to be most useful?
3. What is the best performance that you achieved?
4. Can you think of any other ways you might have been able to improve performance?

6 Intellectual Curiosity (10pts)
As usual, you will receive 90 points for implementing everything described above. To increase
your score further, you can extend your investigation in some way. If you choose to do this,
please briefly describe what you’ve done in your report.

If you would like to use data from another artist, I have provided some scripts for webscraping
lyrics and post-processing them into the same format as the Swift, Beyoncé, and Drake lyrics.

6.1 Wrapping Up
When you’re finished, you should submit all of your Python files and your answers to the questions
(as a PDF) to Gradescope.

5


	Deep Learning Math
	Computing Loss in Binary Regression
	Computing Loss in Multinomial Regression

	Song Classification
	Data Preprocessing
	Computing Features
	Data Loaders
	Building a Regression Model

	Crafting Features
	Word Count Helper Function
	Wordlist Helper Function
	Add Some Features

	Evaluation
	Evaluation Metrics
	How Much Does a Feature Help?
	Questions


	Feature Engineering
	Questions

	Intellectual Curiosity (10pts)

