
Prof. Carolyn Anderson
Wellesley College

CS	333:		
Natural	Language	
Processing

Fall	2025

Reminders
✦ Extension for HW 4: due Monday at 10pm
✦ No quiz next week
✦ Midterm 1: Oct. 10th
✦ My next help hours: Monday 4-5:30
✦ I’m shifting my Thursday help hours to 3-4 so

they don’t conflict with the CS Colloquium (Elena
Glassman)

Midterm	1
✦ In-class programming midterm
✦ Bring your own laptop to work on
✦ I will have starter code and documentation for you to

download at the beginning, then ask you to turn off
wifi.

✦ At the end, you will submit your code on
Gradescope.

✦ May bring a 4x6in note card

Try to install PyTorch

Curiosity	Points	on	HW	3
✦ Further author identification experiments and analysis
✦ Visualizations of the partisan dataset and analysis
✦ Extra research on smoothing techniques
✦ Implementation of extra sampling functions
✦ Additional functions for comparing authors
✦ Smoothing experiments
✦ Analysis of author style by investigating token

frequencies
✦ Research and implementation of TF-IDF
✦ Author comparison on novel dataset

Key	Insight	#1:	Defining	meaning	by	linguistic	distribution

Let's define the meaning of a word by its
distribution in language use, meaning its
neighboring words or grammatical
environments.

Key	Insight	#2:	Meaning	as	a	point	in	multidimensional	space

Each word is represented by a vector (not just "good" or
"w45").
Similar words are "nearby in semantic space"
We build this space by seeing which words are nearby in text

Term	Frequency	-	Inverse	Document	
Frequency	(TF-IDF)

Take	another	look	at	our	Austen	word	frequencies:

Emma Persuasion Sense & Sensibility

admiral 0 69 0

dance 49 11 21

admire 31 14 18

horse 40 15 24

Raw	frequency	is	a	bad	representation
✦ Word counts for Emma are generally higher

because it is a longer novel.
✦ Another issue: some words are so frequent that

they aren't very informative: the, it, or they

Solution	1:	tf-idf
tf-idf: Term Frequency - Inverse Document Frequency

Term Frequency: Inverse Document Frequency:

Term	Frequency

Emma Persuasion Sense & Sensibility

admiral 0 69 0

dance 49 11 21

admire 31 14 18

horse 40 15 24

tf(admiral,Persuasion) =
tf(horse,Persuasion) =

69
15

Inverse	Document	Frequency

Emma Persuasion Sense & Sensibility

admiral 0 69 0

dance 49 11 21

admire 31 14 18

horse 40 15 24

idf(admiral) =
idf(horse) =

of documents

ofdoce

IN

containeron

TF-IDF

Emma Persuasion Sense & Sensibility

admiral 0 69 0

dance 49 11 21

admire 31 14 18

horse 40 15 24

tf-idf(admiral,Persuasion) =
tf-idf(horse,Persuasion) =

69 3 207

15 1 15

Solution	1:	tf-idf
tf-idf: Term Frequency - Inverse Document Frequency

Term Frequency: Inverse Document Frequency:

ft a count tod idf
1

fed log o count ted 1 idff logo Fft

f idf Wed find idff

Repeat for every term every document

What	is	a	document?
Could be a play or a Wikipedia article.
But for the purposes of tf-idf, documents can be
anything; we often call each paragraph a
document!

Word2Vec

Sparse	versus	dense	vectors
tf-idf (or PMI) vectors are:
◦ long (length |V|= 20,000 to 50,000)
◦ sparse (most elements are zero)

Alternative: learn vectors that are:
◦ short (length 50-1000)
◦ dense (most elements are non-zero)

positivemutual information

Sparse	versus	dense	vectors
Why dense vectors?

✦ Short vectors may be easier to use as features in
machine learning (fewer weights to tune)

✦ Dense vectors may generalize better than explicit
counts

✦ In practice, they work better

Simple	static	embeddings	you	can	download!

Word2vec (Mikolov et al)
https://code.google.com/archive/p/word2vec/

GloVe (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

static each word has a unique
Vector representation

Contextual words have different representation
depending on the sentencethey appear in

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/

Word2Vec
Word2Vec is a popular embedding method that is
very fast to train.
Idea: predict rather than count

Word2Vec provides various options for how to learn
embeddings. We'll discuss:

 skip-gram with nega>ve sampling (SGNS)

9 P

Word2Vec
Instead of coun>ng how often each word w occurs near "apricot"

✦ Train a classifier on a binary prediction task:
✦ Is w likely to show up near "apricot"?

We don’t actually care about this task
✦ We'll take the learned classifier weights as the word

embeddings
Big idea: self-supervision:

✦ A word c that occurs near apricot in the corpus cats as
the gold "correct answer" for supervised learning

✦ No need for human labels
✦ Bengio et al. (2003); Collobert et al. (2011)

Approach:	predict	if	candidate	word	c	is	a	"neighbor"

1. Treat the target word t and a neighboring
context word c as positive examples.

Approach:	predict	if	candidate	word	c	is	a	"neighbor"

1. Treat the target word t and a neighboring
context word c as positive examples.

2. Randomly sample other words in the
lexicon to get negative examples

Approach:	predict	if	candidate	word	c	is	a	"neighbor"

1. Treat the target word t and a neighboring
context word c as positive examples.

2. Randomly sample other words in the
lexicon to get negative examples

3. Use logistic regression to train a classifier to
distinguish those two cases

Approach:	predict	if	candidate	word	c	is	a	"neighbor"

1. Treat the target word t and a neighboring
context word c as positive examples.

2. Randomly sample other words in the lexicon
to get negative examples

3. Use logistic regression to train a classifier to
distinguish those two cases

4. Use the learned weights as the embeddings

Assume a +/- 2 word window, given training
sentence:

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 c3 c4

Skip-Gram	Training	Data

 [target]

(assuming a +/- 2 word window)

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 [target] c3 c4

Goal: train a classifier that is given a candidate (word, context) pair
 (apricot, jam)

 (apricot, aardvark)
…

And assigns each pair a probability:

Skip-Gram	Classifier

positive
negative

p I w c

p l Wi c 1 P Iw c

Similarity	is	computed	from	dot	product

Remember: two vectors are similar if they have a
high dot product

✦ Cosine is just a normalized dot product
So:

✦ Similarity(w,c) ∝ w · c
We’ll need to normalize to get a probability

✦ (cosine isn't a probability either)

Turning	dot	products	into	probabilities
Sim(w,c) ≈ w · c

To turn this into a probability, we'll use the sigmoid
function:

orx Ipr x

P t wic o cow t p c n

PC Iw c 1 p twic
o c w itexplc.ws

Turning	dot	products	into	probabilities
Sim(w,c) ≈ w · c

To turn this into a probability, we'll use the sigmoid
function:

How	Skip-Gram	Classifier	computes	P(+|w,	c)	

This is for one context word, but we have lots of context words.
We'll assume independence and multiply them:

P lw.ca c orci w

log P 1 w.ca c log orci w

Skip-gram	classifier:	summary
A probabilistic classifier, given

✦ a test target word w
✦ its context window of L words c1:L

Estimates probability that w occurs in this window based on
similarity of w (embeddings) to c1:L (embeddings).

To compute this, we just need embeddings for all the words.

Embeddings	we'll	need:	a	set	for	w,	a	set	for	c

Word2Vec:	Learning	embeddings

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 [target] c3 c4

Skip-Gram	Training	data

For each positive example

we take k negative

examples sampledby
word frequency

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 [target] c3 c4

Skip-Gram	Training	data

For each positive example we'll
grab k negative examples,
sampling by frequency.

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 [target] c3 c4

Skip-Gram	Training	data

MADE UPOBSERVED

Word2vec:	how	to	learn	vectors

5/12/21

Given the set of positive and negative training
instances, and an initial set of embedding vectors
Goal: adjust the word vectors so they:

maximize the similarity of target
context word pairs w epos

Minimize the similarity of the

negatore examples target wad pairs
W Crey

Word2vec:	how	to	learn	vectors

5/12/21

Given the set of positive and negative training
instances, and an initial set of embedding vectors
Goal: adjust the word vectors so they:

✦ Maximize the similarity of the target word, context
word pairs (w , cpos) drawn from the positive data

Word2vec:	how	to	learn	vectors

5/12/21

Given the set of positive and negative training
instances, and an initial set of embedding vectors
Goal: adjust the word vectors so they:

✦ Maximize the similarity of the target word, context
word pairs (w , cpos) drawn from the positive data

✦ Minimize the similarity of the (w , cneg) pairs drawn
from the negative data.

Loss	function	for	one	w with cpos , cneg1	...cnegk

Maximize the similarity of the target with the
actual context words, and minimize the similarity
of the target with the k negative sampled non-
neighbor words.

LCE log P Iw epos TFP Iw Cregi

logP Iw epos ItlogPC lw.cn

on wrong logP wropos log 1 Prt wigthe model is

logo cpo w logo neg
w

Learning	the	classifier
How to learn?

✦ Stochastic gradient descent!

We’ll adjust the word weights to
✦ make the positive pairs more likely
✦ and the negative pairs less likely,
✦ over the entire training set.

Intuition	of	one	step	of	gradient	descent

Two	sets	of	embeddings
SGNS learns two sets of embeddings

Target embeddings matrix W
Context embedding matrix C

It's common to just add them together, representing
word i as the vector wi + ci

meter for apricot Wapricot Capricot

Summary:	How	to	learn	word2vec	(skip-gram)	embeddings

Start with V random d-dimensional vectors as initial
embeddings
Train a classifier based on embedding similarity

✦ Take a corpus and take pairs of words that co-occur as
positive examples

✦ Take pairs of words that don't co-occur as negative
examples

✦ Train the classifier to distinguish these by slowly
adjusting all the embeddings to improve the classifier
performance

✦ Throw away the classifier code and keep the
embeddings.

Word2Vec
https://semantle.com/

https://semantle.com/

Properties	of	Embeddings

The	kinds	of	neighbors	depend	on	window	size

Small windows (C= +/- 2) : nearest words are
syntactically similar words in same taxonomy

✦ Hogwarts nearest neighbors are other fictional
schools: Sunnydale, Evernight, Blandings

Large windows (C= +/- 5) : nearest words are
related words in same semantic field

✦ Hogwarts nearest neighbors are Harry Potter
world: Dumbledore, half-blood, Malfoy

Analogical	relations
The classic parallelogram model of analogical
reasoning (Rumelhart and Abrahamson 1973).
To solve: "apple is to tree as grape is to _____"

Add tree – apple to grape to get vine

Analogical	relations	via	parallelogram
The parallelogram method can solve analogies with
both sparse and dense embeddings (Turney and
Littman 2005, Mikolov et al. 2013b):

king – man + woman is close to queen
Paris – France + Italy is close to Rome

For a problem a:a*::b:b*, the parallelogram method is:

Structure	in	GloVE	Embedding	space

Word	Embedding	Interactive	Demo
https://www.cs.cmu.edu/~dst/
WordEmbeddingDemo/index.html

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/index.html

Embeddings	reflect	cultural	bias!

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to
computer programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp.
4349-4357. 2016.

Algorithms that use embeddings might be biased as a result.

Ask “Paris : France :: Tokyo : x”
◦ x = Japan

Ask “father : doctor :: mother : x”
◦ x = nurse

Ask “man : computer programmer :: woman : x”
◦ x = homemaker

Caveat:	Limitations	of	Gender	Bias	Approaches

Caveats	with	the	parallelogram	method
It only seems to work for frequent words, small
distances and certain relations (relating countries to
capitals, or parts of speech), but not others. (Linzen
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a).

Understanding analogy is an open area of research
(Peterson et al. 2020)

Train embeddings on different decades of historical text to see
meanings shift

~30 million books, 1850-1990, Google Books data

Embeddings	as	a	window	onto	historical	semantics

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word
Embeddings Reveal Statistical Laws of Semantic Change. Proceedings of ACL.

Historical	embedding	as	a	tool	to	study	cultural	biases

• Compute a gender or ethnic bias for each adjective.
• Embeddings for competence adjective (smart, wise,

brilliant, resourceful, though=ul, logical) are biased toward
men, a bias slowly decreasing 1960-1990

• Embeddings for dehumanizing adjectives (barbaric,
monstrous, bizarre) were biased toward Asians in the
1930s, bias decreasing over the 20th century.

• These match the results of old surveys done in the 1930s

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of
gender and ethnic stereotypes. Proceedings of the National Academy of Sciences 115(16), E3635–
E3644.

