
Prof. Carolyn Anderson
Wellesley College

CS	333:		
Natural	Language	
Processing

Fall	2025

Reminders
✦ HW 5 will be released today:

✦ Regression with hand-crafted features to classify
song lyrics by artist

✦ Quiz 6 on Tuesday (J&M Chapter 6)
✦ My next help hours: Monday 4-5:30

PyTorch

Regression

Classification in logistic regression: summary

Given:
◦ a set of classes: (+ sentiment,- sentiment)
◦ a vector x of features [x1, x2, …, xn]

◦ x1= count("awesome")

◦ x2 = log(number of words in review)

◦ A vector w of weights [w1, w2, …, wn]
◦ wi for each feature fi

2

p y
pryD

Multinomial logistic regression:

◦ a set of classes: (ex: pos, neg, neutral)
◦ a vector x of features [x1, x2, …, xn]

◦ x1= count("awesome")
◦ x2 = log(number of words in review)

◦ A matrix w of weights (wij for each feature fi for each classj)

Zposwipos Wapos Wspos W

ZneyWing Wang WangWang
newW neut Waneot WyneetWynet

Instead of sigmoid soft max
p y pos p y neg p yment

The two phases of logistic regression

Training: we learn weights w and b using stochastic
gradient descent and cross-entropy loss.

Test: Given a test example x we compute p(y|x)
using learned weights w and b, and return
whichever label (y = 1 or y = 0) is higher probability

How	Does	Learning	Work?

Learning in Supervised Classification

Supervised classification:
• We know the correct label y (either 0 or 1) for each x.
• But what the system produces is an estimate,
We want to set w and b to minimize the distance between
our estimate (i) and the true y(i).
• We need a distance estimator: a loss function or a cost

function
• We need an optimization algorithm to update w and b to

minimize the loss.

!̂

!̂

8

Learning components

A loss function:

An optimization algorithm:

Cross entropy loss

stochastic gradient descent

We want to know how far is the classifier output:

from the true output:

We'll call this difference the loss:

The distance between and y!̂

if o w b

Y either G or I

L joy
how far off j

is from y

Intuition of negative log likelihood loss
 = cross-entropy loss

A case of conditional maximum likelihood
estimation
We choose the parameters w,b that maximize
• the log probability
• of the true y labels in the training data
• given the observations x

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can
express the probability p(y|x) from our classifier as:

pry x g 1 g

y

If y 1 this simplifies to 5
If y

0 this simplifies to 1 5

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize: 5 1 5
s

log pry x log g 1 g
s

ylogy l y log l y

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Minimize the cross-entropy loss

Minimize: logpry x

y log if l y log l g

y log o wx b 1 y log l o axt

Does this work for our sentiment example?

We want loss to be:
• smaller if the model estimate is close to correct
• bigger if model is confused

Let's first suppose the true label of this is y=0 (negative)
CATS was a marvelous disaster, with witty charm and emotion
throughout, cheeky charisma and crying no doubt... I
personally went in expecting the worst movie I had ever seen -
and it was far more awful and disappointing that I expected.

Let's see if this works for our sentiment example

True value is y=0. How well is our model doing?

o Wxtb w

G 2.5 50.5.20.7

0,4 170,374 0.1

6 1.75

0.14 5

pr Ix 1 0.11 0.86
1 g

Let's see if this works for our sentiment example

True value is y=0. How well is our model doing?

What's the loss? p t x g 0.14
pl 1 1 5 0.86

y log
o wxto l y log l orwx o

y og j l y log l 51

fed 1 g log i g
log 0.86
0 15

What if the true label was 1?

0.14 9 1

Lce i g y log o wx b 1 y log l o wxb

y log o wx b

log 0 14

1 97

Learning components

A loss function:
◦ cross-entropy loss

An optimization algorithm:
◦ stochastic gradient descent

How wrong is our

model

Stochastic	Gradient	
Descent

Slides borrowed from Jurafsky & Martin Edition 3

Our goal: minimize the loss

Let's make explicit that the loss function is
parameterized by weights !=(w,b)

We’ll represent as f (x; θ) to make the
dependence on θ more obvious
We want the weights that minimize the loss,
averaged over all examples:

!̂

Intuition of gradient descent
How do I get to the bottom of this river
canyon?

x
Look around me 360∘
Find the direction of
steepest slope down
Go that way

km

Our goal: minimize the loss
For logistic regression, loss function is convex
• A convex function has just one minimum
• Gradient descent starting from any point is

guaranteed to find the minimum
• (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

(goal)

Should we move
 right or left from here?

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

slope of loss at w1
is negative

(goal)

So we'll move positive

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

slope of loss at w1
is negative

(goal)

one step
of gradient

descent

So we'll move positive

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Gradients
The gradient of a function of many variables
is a vector pointing in the direction of the
greatest increase in a function.

Gradient Descent: Find the gradient of the
loss function at the current point and move
in the opposite direction.

How much do we move in that direction ?

• The value of the gradient (slope in our
example) weighted by a
learning rate η

• Higher learning rate means that we
make bigger adjustments to the weights

"
"#

$(%(&; #), !)

Now let's consider N dimensions

We want to know where in the N-
dimensional space (of the N parameters that
make up θ) we should move.
The gradient is just such a vector; it expresses
the directional components of the sharpest
slope along each of the N dimensions.

Imagine 2 dimensions, w and b

Visualizing the
gradient vector
at the red point
It has two
dimensions
shown in the x-
y plane

Hyperparameters
The learning rate η is a hyperparameter
◦ too high: the learner will take big steps and overshoot
◦ too low: the learner will take too long

Hyperparameters:
• Briefly, a special kind of parameter for an ML model
• Instead of being learned by algorithm from

supervision (like regular parameters), they are
chosen by algorithm designer.

How much do we move in that direction ?

• The value of the gradient (slope in our
example) weighted by a
learning rate η

• Higher learning rate means that we
make bigger adjustments to the weights

"
"#

$(%(&; #), !)

Partial Derivative for Logistic Regression
Cross-Entropy Loss

Weight Update

Partial Derivative for Logistic Regression
Cross-Entropy

Loss

Weight Update

Derivative
of Loss

=

Partial Derivative for Logistic Regression
Cross-Entropy

Loss

Weight Update

Derivative of "(x)

Chain Rule

Derivative
of Loss

=

Derivative of ln(x)

Partial Derivative for Logistic Regression
Cross-Entropy Loss

Weight Update

Derivative of Cross-Entropy Loss

