CS 333:

Natural Language Fall 2025
Processing

Prof. Carolyn Anderson
Wellesley College

Reminders

HW 5 will be released today:

Regression with hand-crafted features to classify
song lyrics by artist

Quiz 6 on Tuesday (J&M Chapter 6)
My next help hours: Monday 4-5:30

Py Toren i

EAST ASIAN LANGUAGES AND CULTURES &
COGNITIVE AND LINGUISTIC SCIENCES DEPARTMENT PRESENT

e

—=7

Human and Computational
Language Models Can Help
Each Other - Focusing on

Linguistic Testing in Korean

Dr. Sanghoun Song, Associate Professor of
Linguistics and Director of the Research
Institute of Language and Information at
Korea University

Wednesday, October 22
4:30 - 5:30 pm

Science Center - H401

Regression

Classification in logistic regression: summary

Given:
> a set of classes: (+ sentiment,- sentiment)

° avector x of features [x1, x2, .., Xn]
> x1= count("awesome"
> x2 = log(number of words in review)

° A vector wof weights [wl, w2, .., wn]
o w; for each feature f;

Py=1) = G(w-i—l-b)

1
=0 —
9 ey~ Trexp(—(wxT5)

Multinomial logistic regression:

> a set of classes: (ex: pos, neg, neutral)

° avector x of features [x1, x2, .., Xn]
o x1= count("awesome")
> x2 =log(number of words in review)

° A matrix w of weights (w;; for each feature f;for each class;)

~

— u]
W |Pos WlPQS W3p05 WL‘/S\ H /\ ZZPOS
W, g W 2y W.SM:) W“mj %

Lw‘ haot V\jl neot W3%‘_ eyt o J L,‘Z WUJ:

lnskead of Saoid | st v
tg(%”\‘“} 0 (=), 9 Crun Y]

The two phases of logistic regression

Training: we learn weights w and b using stochastic
gradient descent and cross-entropy loss.

Test: Given a test example x we compute p(y|x)
using learned weights w and b, and return
whichever label (y =1 or y = 0) is higher probability

How Does Learning Work?

Learning in Supervised Classification

Supervised classification:
« We know the correct label y (either O or 1) for each x.
« But what the system produces is an estimate, $

We want to set w and b to minimize the distance between
our estimate () and the true y(.

« We need a distance estimator: a loss function or a cost
function

« We need an optimization algorithm to update w and b to
minimize the loss.

Learning components

A loss function:
0SS - @/\’rmp% lo53

An optimization algorithm:
st otMarli ¢ c](%fim* descedt

The distance between) and y

We want to know how far is the classifier output:
A

9y = o(w¥X+b)

from the true output: - Y

We'll call this difference the loss: | _ (83,&3) =

Intuition of negative log likelihood loss
= cross-entropy loss

A case of conditional maximum likelihood
estimation

We choose the parameters w,b that maximize
- the log probability

« of the true y labels in the training data

« given the observations x

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can
express the probability p(y|x) from our classifier as:

P(%\X) = ’\\5\) (l—-%y-j

(P \3-.—,’3_ , Ay ng\ﬂh‘f?\es Yo :j\

4 =0, W simflifs te (-

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

A ~\-
Maximize: POI) = 4°(1-3)
(og)= logl 3 (1-3)7 |
- Y [03:\5 + ('—j) [0(3 ("4)

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Minimize the cross-entropy loss

Minimize: Lee(.y)= < loy plylx)
= - Lj \ool:j £ (i-%) \03 (l—%)]
= - [sj l&)cs g (WX*b}* (" '&J) [03(|-6'(w<+6-)§

Does this work for our sentiment example?

We want loss to be:
« smaller if the model estimate is close to correct

« bigger if model is confused

Let's first suppose the true label of this is y=0 (negative)

CATS was a marvelous disaster, with witty charm and emotion
throughout, cheeky charisma and crying no doubt... |
personally went in expecting the worst movie | had ever seen -

and it was far more awful and disappointing that | expected.

Let's see if this works for our sentiment example

True value is y=0. How well is our model doing?

p(+x) =P(y=1]x) = o (wx¥b)
G ([25,-505207) «
L 6,4, 170,313 +01)
- g (-1.7%)

P(-1x)= 1-0-11= 0.4¢

A
\- 4

Let's see if this works for our sentiment example

True value is y=0. How well is our model doing?
Q)(“’[KB -'..1:3\: OI'—I
pl-1x)=1-5 = 0.86
Le($,y) = - [U3 Joq & (wx40Y (1) leg (I - g{owxs6)) |
= ~Lglg g (1) log (1-3)))
0
o — [0uloq3) + (1-9) log (1-9)) §
- loy (0.86)
= 0.15

What's the loss?

W

What if the true label was 17

p(+x) =P(y=1x) = 0.)4 41

Lee (Gq)= - [3 103 O’(WX*D*’M

= - [y log o(wr<b) §

= .97

Learning components

/A loss function: Bow urensy is ow

o cross-entropy loss Mode\ ¢

An optimization algorithm:
> stochastic gradient descent

Stochastic Gradient
Descent

Slides borrowed from Jurafsky & Martin Edition 3

Our goal: minimize the loss

Let's make explicit that the loss function is
parameterized by weights 6=(w,b)

We'll represent 3\/ as f (x; 0) to make the
dependence on 6 more obvious

We want the weights that minimize the loss,
averaged over all examples:

0 = argmin 3" Len(£(x;0),)
0 i=1

Intuition of gradient descent

How do | get to the bottom of this river

canyon?
P NN Look around me 360:-

Find the direction of
steepest slope down

Go that way

Our goal: minimize the loss

For logistic regression, loss function is convex
» A convex function has just one minimum

» Gradient descent starting from any point is

guaranteed to find the minimum
« (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

Loss ¢ Should we move
right or left from here?

Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

Loss !

slope of loss at wl/

1S negative

So we'll move positive

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

Loss !

one step
of gradient

slope of loss at Wl//' descent

1S negative

So we'll move positive

Gradients

The gradient of a function of many variables
is a vector pointing in the direction of the
greatest increase in a function.

Gradient Descent: Find the gradient of the
loss function at the current point and move
in the opposite direction.

How much do we move in that direction ?

« The value of the gradient (slope in our
example) %L(f(x;w),y) weighted by a
learning rate n

» Higher learning rate means that we
make bigger adjustments to the weights

W =W =1 L(f(xw).)

Now let's consider N dimensions

We want to know where in the N-

dimensional space (of the N parameters that
make up 0) we should move.

The gradient is just such a vector; it expresses
the directional components of the sharpest
slope along each of the N dimensions.

Imagine 2 dimensions, w and b

Visualizing the
gradient vector
at the red point

It has two
dimensions
shown in the x-
y plane

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 0
where: L 1s the loss function
f 1s a function parameterized by 6
X is the set of training inputs x(l), x(z), ooy x(m)
y is the set of training outputs (labels) y) 2 y(m)

6<0
repeat til done # see caption
For each training tuple (x{), y{)) (in random order)

1. Optional (for reportmg) # How are we doing on this tuple?

Compute §\) = f (6) # What is our estimated output y?

Compute the loss L), y¥)) # How far off is () from the true output y(9)?
2. g+ VoL(f(x1;0),y®) # How should we move 6 to maximize loss?
3.0<-060 —ng # Go the other way instead

return 6

Hyperparameters

The learning rate n is a hyperparameter
> too high: the learner will take big steps and overshoot

> too low: the learner will take too long

Hyperparameters:
» Briefly, a special kind of parameter for an ML model

« Instead of being learned by algorithm from
supervision (like regular parameters), they are
chosen by algorithm designer.

How much do we move in that direction ?

« The value of the gradient (slope in our
example) %L(f(x;w),y) weighted by a
learning rate n

» Higher learning rate means that we
make bigger adjustments to the weights

W =W =1 L(f(xw).)

Partial Derivative for Logistic Regression

Cross-Entropy Loss
Lee(9,y) = —[ylogo(w-x+b)+(1 —y)log(1 —o(w-x+b))]

Weight Update
W =t =0 S f (),)
dw Y

Partial Derivative for Logistic Regression

Cross-Entropy Lce(9,y) = —[ylogo(w-x+b)+(1—y)log(l —o(w-x+Db))]
Loss

Weight Update w'*!l=w'—q %L(f (x5w),)

Derivative Jd Ry i—[ylogo(w-x+b)+(1—y)10g(1—G(W°X+b))]
dw awj
of Loss

Partial Derivative for Logistic Regression

Cross-Entropy Lce(§,y) = —[ylogo(w-x+b)+(1—y)log(l—oc(w-x+Db))]

Loss |
. d . df du dv
t+1 _ ¢t . aj _ du ay
Weight Update w'*' =w' — n%L(flxw),y) Chain Rule o = o
. . do(z) . Derivati £1 (x) d 1
Derivative of o(x) —;, —°@(l1—0(z)) Derivative of In(x —In(x) = —
Derivative d 0

o L(f(sw),y) = a—wj—[ylogO'(w-x-l-b)-l-(l—)’)lOg(l—O'(W‘X‘|‘b))]
0 0SS

Partial Derivative for Logistic Regression

Cross-Entropy Loss

Lce(3,y) = —[logo(w-x+b)+(1—y)log(l—o(w-x+Db))]
Weight Update
t+1 d

W =w'—n -L(f(xw),y)

Derivative of Cross-Entropy Loss

d

EL(f(x;w),y) = [o(w-x+b) —yx;

