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Reminders
✦ HW 5 will be released today:

✦ Regression with hand-crafted features to classify 
song lyrics by artist

✦ Quiz 6 on Tuesday (J&M Chapter 6)
✦ My next help hours: Monday 4-5:30

PyTorch





Regression



 
Classification in logistic regression: summary

Given: 
◦ a set of classes:  (+ sentiment,- sentiment) 
◦ a vector x of features [x1, x2, …, xn] 

◦ x1= count( "awesome") 

◦ x2 = log(number of words in review) 

◦ A vector w of weights  [w1, w2, …, wn] 
◦ wi  for each feature fi
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Multinomial logistic regression:

◦ a set of classes:  (ex: pos, neg, neutral ) 
◦ a vector x of features [x1, x2, …, xn] 

◦ x1= count( "awesome") 
◦ x2 = log(number of words in review) 

◦ A matrix w of weights (wij  for each feature fi for each classj) 

Zposwipos Wapos Wspos W

ZneyWing Wang WangWang
newW neut Waneot WyneetWynet

Instead of sigmoid soft max
p y pos p y neg p yment



The two phases of logistic regression 

Training: we learn weights w and b using stochastic 
gradient descent and cross-entropy loss.  

Test: Given a test example x we compute p(y|x) 
using learned weights w and b, and return 
whichever label (y = 1 or y = 0) is higher probability



How	Does	Learning	Work?



Learning in Supervised Classification

Supervised classification:  
• We know the correct label y (either 0 or 1) for each x.  
• But what the system produces is an estimate,  
We want to set w and b to minimize the distance between 
our estimate (i) and the true y(i).  
• We need a distance estimator: a loss function or a cost 

function 
• We need an optimization algorithm to update w and b to 

minimize the loss.
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Learning components

A loss function: 

An optimization algorithm:

Cross entropy loss

stochastic gradient descent



We want to know how far is the classifier output: 
            

from the true output: 
                 

We'll call this difference the loss: 
                   

The distance between and y!̂ 

if o w b

Y either G or I

L joy
how far off j

is from y



Intuition of negative log likelihood loss 
 = cross-entropy loss

A case of conditional maximum likelihood 
estimation  
We choose the parameters w,b that maximize 
• the log probability  
• of the true y labels in the training data  
• given the observations x 
 



Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)  

Since there are only 2 discrete outcomes (0 or 1) we can 
express the probability p(y|x) from our classifier as: 
  
pry x g 1 g

y

If y 1 this simplifies to 5
If y

0 this simplifies to 1 5



Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) 

Maximize: 5 1 5
s

log pry x log g 1 g
s

ylogy l y log l y



Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)  
Minimize the cross-entropy loss 

Minimize: logpry x

y log if l y log l g

y log o wx b 1 y log l o axt



Does this work for our sentiment example?

We want loss to be: 
• smaller if the model estimate is close to correct 
• bigger if model is confused 

Let's first suppose the true label of this is y=0 (negative)
CATS was a marvelous disaster, with witty charm and emotion 
throughout, cheeky charisma and crying no doubt... I 
personally went in expecting the worst movie I had ever seen - 
and it was far more awful and disappointing that I expected.  



Let's see if this works for our sentiment example

True value is y=0.  How well is our model doing? 
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Let's see if this works for our sentiment example

True value is y=0.  How well is our model doing? 

What's the loss? p t x g 0.14
pl 1 1 5 0.86

y log
o wxto l y log l orwx o

y og j l y log l 51

fed 1 g log i g
log 0.86
0 15



What if the true label was 1?

0.14 9 1

Lce i g y log o wx b 1 y log l o wxb
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Learning components

A loss function: 
◦ cross-entropy loss 

An optimization algorithm: 
◦ stochastic gradient descent

How wrong is our

model



Stochastic	Gradient	
Descent

Slides borrowed from Jurafsky & Martin Edition 3



Our goal: minimize the loss

Let's make explicit that the loss function is 
parameterized by weights !=(w,b) 

We’ll represent as f (x; θ ) to make the 
dependence on θ more obvious 
We want the weights that minimize the loss, 
averaged over all examples: 
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Intuition of gradient descent
How do I get to the bottom of this river 
canyon?

x
Look around me 360∘ 
Find the direction of 
steepest slope down 
Go that way

km



Our goal: minimize the loss
For logistic regression, loss function is convex 
• A convex function has just one minimum 
• Gradient descent starting from any point is 

guaranteed to find the minimum 
• (Loss for neural networks is non-convex) 

 



Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

(goal)

Should we move
 right or left from here?

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function 



Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

slope of loss at w1 
is negative

(goal)

So we'll move positive

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function 



Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

slope of loss at w1 
is negative

(goal)

one step
of gradient

descent

So we'll move positive

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function 



Gradients
The gradient of a function of many variables 
is a vector pointing in the direction of the 
greatest increase in a function.  

Gradient Descent: Find the gradient of the 
loss function at the current point and move 
in the opposite direction. 



How much do we move in that direction ?

• The value of the gradient (slope in our 
example)   weighted by a 
learning rate η  

• Higher learning rate means that we 
make bigger adjustments to the weights
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Now let's consider N dimensions

We want to know where in the N-
dimensional space (of the N parameters that 
make up θ ) we should move.  
The gradient is just such a vector; it expresses 
the directional components of the sharpest 
slope along each of the N dimensions. 



Imagine 2 dimensions, w and b

Visualizing the 
gradient vector 
at the red point 
It has two 
dimensions 
shown in the x-
y plane





Hyperparameters
The learning rate η is a hyperparameter 
◦ too high: the learner will take big steps and overshoot 
◦ too low: the learner will take too long 

Hyperparameters: 
• Briefly, a special kind of parameter for an ML model 
• Instead of being learned by algorithm from 

supervision (like regular parameters), they are 
chosen by algorithm designer.



How much do we move in that direction ?

• The value of the gradient (slope in our 
example)   weighted by a 
learning rate η  

• Higher learning rate means that we 
make bigger adjustments to the weights
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Partial Derivative for Logistic Regression
Cross-Entropy Loss

Weight Update



Partial Derivative for Logistic Regression
Cross-Entropy 

Loss

Weight Update

Derivative 
of Loss

=



Partial Derivative for Logistic Regression
Cross-Entropy 

Loss

Weight Update

Derivative of "(x)

Chain Rule

Derivative 
of Loss

=

Derivative of ln(x)



Partial Derivative for Logistic Regression
Cross-Entropy Loss

Weight Update

Derivative of Cross-Entropy Loss


