CS 333: NLP Fall 2025

Prof. Carolyn Anderson
Wellesley College



Reminders

HW 5 is due Thursday:

Regression with hand-crafted features to classify
song lyrics by artist

No class next Tuesday (Tanner)

Quiz 7 next Friday (J&M Chapter 7)
My next help hours: Thursday 4-5



Human and Computational
Language Models Can Help
Each Other - Focusing on

Linguistic Testing in Korean

Dr. Sanghoun Song, Associate Professor of
Linguistics and Director of the Research
Institute of Language and Information at
Korea University

Wednesday, October 22
4:30 - 5:30 pm

Science Center - H401




Large Language Models: What can they tell us
about language structure and acquisition

1-6pm on Novw. 6th
George Sherman Union, Boston University

https://web.sas.upenn.edu/societyforlanguagedevelopment/symposium



Stochastic Gradient
Descent Recap



Learning in Supervised Classification

Supervised classification:
« We know the correct label y (either O or 1) for each x.
« But what the system produces is an estimate, $

We want to set w and b to minimize the distance between
our estimate () and the true y(.

« We need a distance estimator: a loss function or a cost
function

« We need an optimization algorithm to update w and b to
minimize the loss.



Our goal: minimize the loss

For logistic regression, loss function is convex
» A convex function has just one minimum

» Gradient descent starting from any point is

guaranteed to find the minimum
« (Loss for neural networks is non-convex)



Gradients

The gradient of a function of many variables
is a vector pointing in the direction of the
greatest increase in a function.

Gradient Descent: Find the gradient of the
loss function at the current point and move
in the opposite direction.



Partial Derivative for Logistic Regression

Cross-Entropy Loss
Lee(9,y) = —[ylogo(w-x+b)+(1 —y)log(1 —o(w-x+b))]

Weight Update
t+1 t d
W =w —n——L(f(x;w),y)
dw



Partial Derivative for Logistic Regression

Cross-Entropy Lce(§,y) = —[ylogo(w-x+b)+(1—y)log(l—oc(w-x+Db))]
Loss

Weight Update w'tl=y' —q %L(f (xsw),)

Derivative %L(f(x;w),y) _ aiw_[ylogg(w.x+b)+(1—y)1og(1—c;(w-x+b))]
of Loss !



Partial Derivative for Logistic Regression

Cross-Entropy Lce(§,y) = —[ylogo(w-x+b)+(1—y)log(l—oc(w-x+Db))]

Loss C
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Partial Derivative for Logistic Regression

Cross-Entropy Lce($,y) = —[ylogo(w-x+b)+(1—y)log(l—o(w-x+b))]
Loss
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Partial Derivative for Logistic Regression

Cross-Entropy Loss

Leg(9,y) = =[ylogo(w-x+b)+(1—y)log(l —o(w-x+b))]
Weight Update
d = \eav
t+1 t < N
W =w L(f(x;w 1 7
Derivative of Cross-Entropy Loss y@ric” LO A - (0. 00000 \7
d

L sw)y) = [o(w-x+b) —ylx;



Deriving cross-entropy loss for multi-label classification

Goal: maximize probability of the correct label p(y|x)

K
Lee(§,y) = — ) yelogdi
k=1

= —logp(y. =1|x) (where c is the correct class)

exp (We - X+ b,)
K

= —log
> j—1¢Xp (Wj-X+bj)

(c 1s the correct class)

The true probabilities of all but one class will be zero.



How much do we move in that direction ?

« The value of the gradient (slope in our
example) %L(f(x;w),y) weighted by a
learning rate n

» Higher learning rate means that we
make bigger adjustments to the weights

W =W =1 L(f(xw).)




www.i-am.ai/ gradient-descent.html



Neural Networks



This is not your brain

https:/ / github.com /jessevig /bertvi

 It's a large language model (neural network)

Most contemporary models have billions of parameters (GPT3: 175 billion); some may have trillions



This is someone's brain

estimated to have 100 trillion synapses connecting 100 billion neurons


https://www.youtube.com/watch?v=X1Eq15TXNgM

This is in your brain

Cell body

Axon Telodendria

f! 4 !
Nucleus /
Ml Axon hillock Synaptic terminals

e

—

Golgi apparatus
Endoplasmic
reticulum

Mitochondrion \\ \ Dendrite

/ % Dendritic branches

https://commons.wikimedia.org/w/index.php?curid=28761830



Neural Network Unlt

This is not in your brain ‘3
I




Units in Neural Networks



Neural unit
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Non-Linear Activation Functions

We're already seen the sigmoid for logistic regression:




Final function of a unit:

§ = F [wXH0)
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Spot the differences

Neural Network Unit Logistic Regression
N
z =6+« i:w:)(-. Z‘-‘\éw;i;)\‘{)
' 1=

§ = f (wds b plae112) = & (w-%+6)



Final unit again




tanh(z)

y

Non-Linear Activation Functions besides sigmoid

Most Common:

1.0 10
0.5 5
=)
\(_\)/
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;
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-1.075 5 0 5 10 ~19% =5 0 5 10
tanh RelLU

Rectified Linear Unit

YT e +e7? y = max(z,0)




Example: XOR

Slides borrowed from Jurafsky & Martin Edition 3



The XOR prOblem Minsky and Papert (1969)

Can neural units compute simple functions of input?

AND OR XOR
x1 x2y x1 x2|y x1 x2|y
®© 0 |0 ®© 0 |0 ® 0 |0
© 1 |0 O 1 |1 ® 1 |1
1 0 (0 1 0 |1 1 0 |1
1 1 |1 1 1 |1 1 1 |0




Perceptrons

A very simple neural unit
« Binary output (0 or 1)

« No non-linear activation function

(0, ifw-x+b<0
Y=Y 1, ifw-x4+b>0




Solving AND

Slides borrowed from Jurafsky & Martin Edition 3



Deriving AND

(0, fw-x+b<0
Y=V 1, ifw-x+b>0

Goal: return 1 1f x1 and x2 are 1

AND

x1 x2

= =D
= D =

===



Deriving AND

Goal: return 1 if x1 and x2 are 1

= £0 W wled g6
% w\',\‘ % f. ik wreb50
Wz =03
Xz > —
b= )
\¥ IF % ,x, =4
=4 ond %,=0: P . _
I+ %y - 2= 1+05 -1 = (05
Z - l {-O" = O _ /L



Exercise: solving OR

OR
x]l x2
® O

===

1
0
1

= =D



Deriving OR

[0, ifw-x+b<0
Y=V 1, ifw-x+b>0

Goal: return 1 if either inputis 1

OR
x]l x2
® O

= =D
e — I

= = =D



Deriving OR

& ¥ =0, x,=0:
2= |0+ [04 -0.5:
Goal: return 1 if either input s 1 -0.5

K W= 3y =0




solving XOR

XOR
x]l x2
® O

N —
S = = <

\)
1
1



Trick question!
It's not possible to capture XOR with perceptrons




Why? Perceptrons are linear classifiers

Perceptron equation is the equation of a line

WX + WrX» + b — O
(in standard linear format: x, = (—w;/wy)x; + (=b/w,) )
This line acts as a decision boundary

« Oifinputis on one side of the line
« 1if on the other side of the line



Decision boundaries
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Solution to the XOR problem

XOR can't be calculated by a single perceptron
XOR can be calculated by a layered network of units.

XOR A O3
x1 X2 |y RelLU @ @
® 0 |0 IS
o 1 |1 R
1 0 |1
1 1 (0




