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Reminders
✦ HW 6 will be released today:

✦ Neural network classifier for song lyrics using 
contextualized word embeddings

✦ No class on Tuesday (Tanner)
✦ CS Colloquium on 10/31
✦ Quiz 7 next Friday (J&M Chapter 7)
✦ My next help hours: Monday 4-5:30
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Non-Linear Activation Functions besides sigmoid
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tanh ReLU 
Rectified Linear Unit

Most Common:



Decision boundaries
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XOR is not a linearly separable function!

0



Solution to the XOR problem
XOR can't be calculated by a single perceptron 
XOR can be calculated by a layered network of units. 
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The hidden representation h
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(With learning:  hidden layers will learn to form useful representations)



Feedforward	Networks



Feedforward Neural Networks

Can also be called multi-layer perceptrons 
for historical reasons



Binary Logistic Regression as a 1-layer Network
(we don't count the input layer in counting layers!)
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Multinomial Logistic Regression as a 1-layer Network
Fully connected single layer network

3 classes

nodeperclass
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Reminder: softmax: a generalization of sigmoid

For a vector z of dimensionality k, the softmax is: 

Example:



Two-Layer Network with scalar output
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Two-Layer Network with softmax output
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Multi-layer Notation
sigmoid
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Replacing the bias unit

Let's switch to a notation without the bias unit 
Just a notational change 
1. Add a dummy node a0=1 to each layer 
2. Its weight w0 will be the bias 
3. So input layer a[0]0=1,  

◦ And a[1]0=1 , a[2]0=1,…



Replacing the bias unit

Instead of:     We'll do this:

x= x1, x2, …, xn0 x= x0, x1, x2, …, xn0

yy

y



Replacing the bias unit

x1 x2

y1

xn0…

…

+1

b

…
U

W

y2 yn2

h1 h2 h3 hn1

x1 x2

y1

xn0…

…

x0=1

…
U

W

y2 yn2

h1 h2 h3 hn1

Instead of:   We'll do this:



Using	feedforward	
networks



Use cases for feedforward networks

Let's reconsider text classification 

(State-of-the-art systems use more powerful architectures)
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Classification: Sentiment Analysis
We could do exactly what we did with 
logistic regression 
Input layer are binary features as before 
Output layer is 0 or 1
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Sentiment Features
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Feedforward nets for simple classification

Just add a hidden layer to logistic regression 
• allows the network to use non-linear interactions 

between features  
• which may (or may not) improve performance.
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Reminder: Multiclass Outputs
What if you have more than two output classes? 
◦ Add more output units (one for each class) 
◦ And use a “softmax layer”
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Training	a	Feedforward	
Network



Learning in Supervised Classification

Supervised classification:  
• We know the correct label y (either 0 or 1) for each x.  

• But what the system produces is an estimate,  
We want to set W to minimize the distance between our 
estimate (i) and the true y(i).  
• We need a distance estimator: a loss function or a cost 

function 
• We need an optimization algorithm to update W to minimize 

the loss.

!̂ 
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Step	1:	Compute	Loss
1 Refine a loss function to minimize

heights

We want
measure performance

smooth convexish

differentiable
We call use cross entropy

Today we'll use square loss

L y y



Step	2:	Compute	the	Gradient	of	the	Loss

2 Given L compute the gradient of

L wrt

Gradient tells us the direction of

the steepest ascent of the loss

Gradient is the same dimensionality as

For each weight parameter j in

gradient tells us how much the loss

would increase if we increase j



Step	3:	Update	the	Weights
3 Given the gradient 8 vector

take a step in the direction of

the negative gradient to minimize L

new Goa n 0

gradient
prev
weights learning

rate



Hyperparameters
A hyperparameter is a variable in our model that is 
set beforehand rather than learned.

Learning Rate: 

Batch Size: 

how much do we update
weights at each step

how often we update weights

Common compromise mini batching



Single	Neuron	Feedforward	Example
X h O
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Step	1:	Compute	Loss
Step 1 Compute loss

L y y Square loss



Step	2:	Compute	the	Gradient	of	the	Loss

X h O
w1 w2

Chain Rule of Calculus f 11.0
Derivative of tanh

01ft 1 tanh x



Data	Flows	Through	the	Network

https://archive.org/details/win3_PipeDr3x



Step	2:	Compute	the	Gradient	of	the	Loss
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Step	2:	Compute	the	Gradient	of	the	Loss

X h O
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Derivative of tanh
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Step	2:	Compute	the	Gradient	of	the	Loss
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Step	3:	Update	the	Weights
X h O

w1 w2

WZnew Wzoid 7 8
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Incorporating	Embeddings



Even better: representation learning

The real power of deep learning comes 
from the ability to learn features from the 
data, instead of using hand-built human-
engineered features for classification.
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Neural Net Classification with embeddings as input features!



Issue: texts come in different sizes

This assumes a fixed size length (3)!   

   
Some simple solutions:
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1 Make the input the same size

If shorter pad w zero embeddings

If too long truncate
2 Create a safe sentence embedding

to represent all the

words.figAverage the embeddings
Take the max value for ethension


