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Reminders

HW 6 will be released today:

Neural network classifier for song lyrics using
contextualized word embeddings

No class on Tuesday (Tanner)

CS Colloquium on 10/31

Quiz 7 next Friday (J&M Chapter 7)
My next help hours: Monday 4-5:30
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Neural Network Unit

Output value vy

Non-linear activation function

Weighted sum

, bias
Weights w,

Input layer X; X5 X3



tanh(z)

y

Non-Linear Activation Functions besides sigmoid

Most Common:
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Rectified Linear Unit
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Decision boundaries
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XOR is not a linearly separable function!



Solution to the XOR problem

XOR can't be calculated by a single perceptron
XOR can be calculated by a layered network of units.
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The hidden representation h
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(With learning: hidden layers will learn to form useful representations)



Feedforward Networks



Feedforward Neural Networks

Can also be called multi-layer perceptrons
for historical reasons




Binary Logistic Regression as a 1-layer Network

(we don't count the input layer in counting layers!)
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Multinomial Logistic Regression as a 1-layer Network
Fully connected single layer network
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Reminder: softmax: a generalization of sigmoid

For a vector z of dimensionality k, the softmax is:

exp (z1) exp (22) exp (zk)

, ,...,

Siiexp(zi) Soiqexp(z)  >oeqexp(z)

dexp(z,-) l<i<d
Zj=1 exp(z;)

softmax(z) =

softmax(z;) =

Example:
z=1[0.6,1.1,—-1.5,1.2,3.2,—1.1],

softmax(z) = [0.055,0.090,0.0067,0.10,0.74,0.010]



Two-Layer Network with scalar output
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Two-Layer Network with softmax output
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Multi-layer Notation




Replacing the bias unit

Let's switch to a notation without the bias unit

Just a notational change

1. Add adummy node a,=1 to each layer
2. Its weight w, will be the bias

3.  Soinput layer al0l,=1,
© And a[1]0=1 , a[2]0=1,...



Replacing the bias unit

Instead of: We'll do this:
X=X, X2y ey X0 X— X0, X1, X2y ooy Xpy0
Yy = o(Wx+b) vy = o (Wx)
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Replacing the bias unit

Instead of: We'll do this:




Using feedforward
networks



Use cases for feedforward networks

Let's reconsider text classification

(State-of-the-art systems use more powerful architectures)



Classification: Sentiment Analysis

We could do exactly what we did with
logistic regression

Input layer are binary features as before

Output layerisOor 1
o)




Sentiment Features

Var Definition

x;  count(positive lexicon words € doc)
x;  count(negative lexicon words € doc)
. { 1 if “no” € doc
0 otherwise
x4  count(1st and 2nd pronouns € doc)
{ 1 1if “!I” €doc

0 otherwise

x¢  log(word count of doc)



Feedforward nets for simple classification

2-layer
feedforward
network

Logistic
Regression

f, f, f,
1:1 fz fn
Just add a hidden layer to logistic regression

 allows the network to use non-linear interactions
between features

« which may (or may not) improve performance.



Reminder: Multiclass Outputs

What if you have more than two output classes?
> Add more output units (one for each class)

> And use a “softmax layer”

softmax(z;) = - 1<i<D




Training a Feedforward
Network



Learning in Supervised Classification

Supervised classification:
« We know the correct label y (either 0 or 1) for each x.

o But what the system produces is an estimate, /)>
We want to set W to minimize the distance between our
estimate ﬂ\/(i) and the true ),

« We need a distance estimator: a loss function or a cost
function

« We need an optimization algorithm to update W to minimize
the loss.



Step 1: Compute Loss

Pefve @ by fentttien L(®) to mimimize_

4‘
Weigvits

We want;
- WU [lwy‘wmamz

- sooth /convexish
—  differentitble

We oy \}%4 (V0SS -&nkzp Y.

2
L2 C4-3)



Step 2: Compute the Gradient of the Loss
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Step 3: Update the Weights
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Hyperparameters

A hyperparameter is a variable in our model that is
set beforehand rather than learned.

Learning Rate: hav wdr do e c{)w&a
weigihs et &OV\SW

Batch Size:  han  often e  (pdaic weiirls®
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Single Neuron Feedforward Example
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Step 1: Compute Loss

Step 1. Com(w Loss
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Step 2: Compute the Gradient of the Loss
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Data Flows Through the Network
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Step 2: Compute the Gradient of the Loss
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Step 2: Compute the Gradient of the Loss
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Step 2: Compute the Gradient of the Loss
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Step 3: Update the Weights




Incorporating Embeddings



Even better: representation learning

The real power of deep learning comes
from the ability to learn features from the
data, instead of using hand-built human-
engineered features for classification.



Neural Net Classification with embeddings as input features!

p(positive sentiment|The dessert is...)
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Issue: texts come in different sizes
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