CS 333:

Natural Language Processing

Fall 2025

Prof. Carolyn Anderson Wellesley College

Reminders

- Midterm 2 is next Friday!
 - The exam is open-note but closed-device
 - List of topics posted on the course website.
- No quiz on Tuesday
- Tuesday -> Monday cycle for final two assignments:
 - HW 7 will be released next Friday but it is not due until Monday, 11/17
 - HW 8 will be released on Tuesday, 11/18 and due on Monday, 11/24
- My next help hours: Monday 4-5:30

Date: Oct 31st, 12:45 - 2:00pm Location: Sci H-105 **RSVP For Lunch**

https://bit.ly/CSKawakami

Accessibility and Disability: accessibility@wellesley.edu

?sb129@wellesley.edu

Lindsey Cameron Colloquium

November 14th, 3:45-5pm in H105

Title: Scalable Subjugation: The Myth of Geographic Scalability in the Gig Economy and How Workers Reconstitute Platforms

New Research in Religious Studies

Hinduism Online: Mechanized Murti and Automated Adoration

Presented by Dr. Holly Walters

Department of Anthropology

SCAN QR CODE TO RSVP

Tuesday, November 4th at 5pm FND 120

exp: 11/5
?: mk110@wellesley.edu

Neural Language Models

language model review

 Goal: compute the probability of a sentence or sequence of words:

```
P(W) = P(W_1, W_2, W_3, W_4, W_5...W_n)
```

- Related task: probability of an upcoming word:

 P(w₅|w₁,w₂,w₃,w₄)
- A model that computes either of these:

```
P(W) or P(w_n|w_1,w_2...w_{n-1}) is called a language model or LM
```

n-gram models

$$p(w_j | \text{ students opened their}) = \frac{\text{count}(\text{students opened their } w_j)}{\text{count}(\text{students opened their})}$$

Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if "students opened their w_j " never occurred in data? Then w_j has probability 0!

$$p(w_j | \text{students opened their}) = \frac{\text{count(students opened their } w_j)}{\text{count(students opened their)}}$$

Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if "students opened their w_j " never occurred in data? Then w_j has probability 0!

(Partial) Solution: Add small δ to count for every $w_j \in V$. This is called *smoothing*.

$$p(w_j | \text{ students opened their}) = \frac{\text{count(students opened their } w_j)}{\text{count(students opened their)}}$$

Problems with n-gram Language Models

Storage: Need to store count for all possible n-grams. So model size is $O(\exp(n))$. $P(\boldsymbol{w}_j|\text{students opened their}) = \frac{\text{count}(\text{students opened their }\boldsymbol{w}_j)}{\text{count}(\text{students opened their})}$

Increasing *n* makes model size huge!

another issue:

 We treat all words / prefixes independently of each other!

students opened their ____ Shouldn't we share information across these semantically-similar prefixes?

undergraduates opened their ____ students turned the pages of their ____ students attentively perused their ____

Slides adapted from Mohit Iyyer

Why Neural LMs work better than N-gram LMs

Training data:

We've seen: I have to make sure that the cat gets fed.

Never seen: dog gets fed

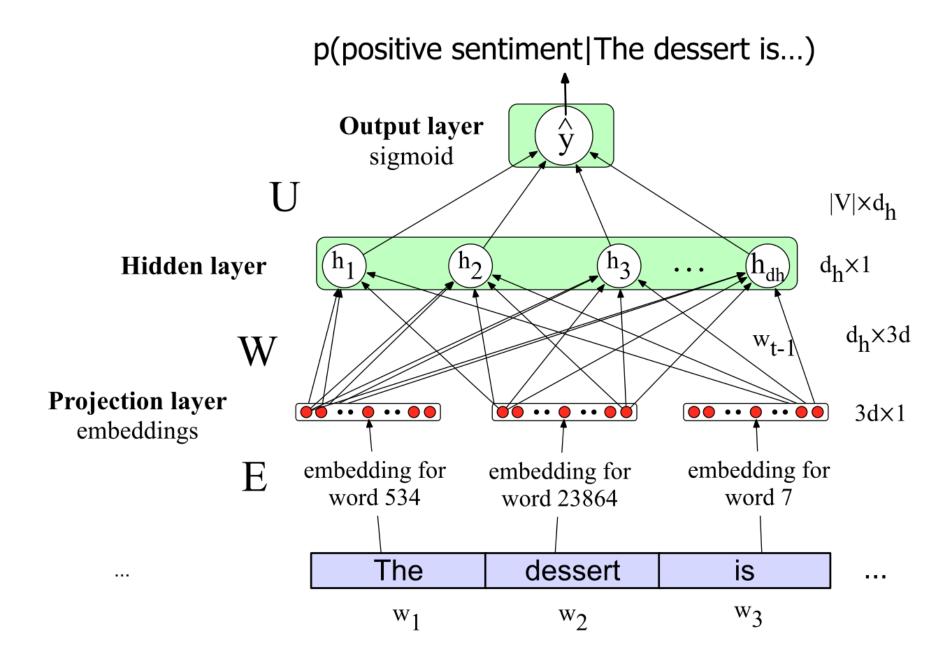
Test data:

I forgot to make sure that the dog gets ____

N-gram LM can't predict "fed"!

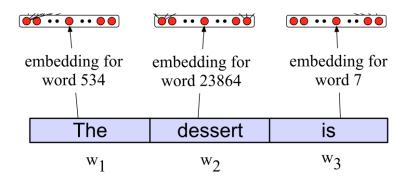
Neural LM can use similarity of "cat" and "dog" embeddings to generalize and predict "fed" after dog

Neural Net Classification with embeddings as input features!



Issue: texts come in different sizes

This assumes a fixed size length (3)!



Some simple solutions (more sophisticated solutions later)

- Make the input the length of the longest review

 - If shorter then pad with zero embeddings
 Truncate if you get longer reviews at test time
- 2. Create a single "sentence embedding" (the same dimensionality as a word) to represent all the words
 - Take the mean of all the word embeddings
 - Take the element-wise max of all the word embeddings
 - For each dimension, pick the max value from all words

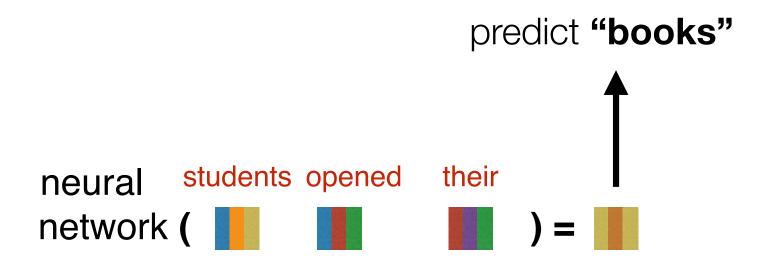
composing embeddings

 neural networks compose word embeddings into vectors for phrases, sentences, and documents

compositions: 1. Concetenation 2. energying

```
students opened
                           their
neural
network (
```

Predict the next word from composed prefix representation

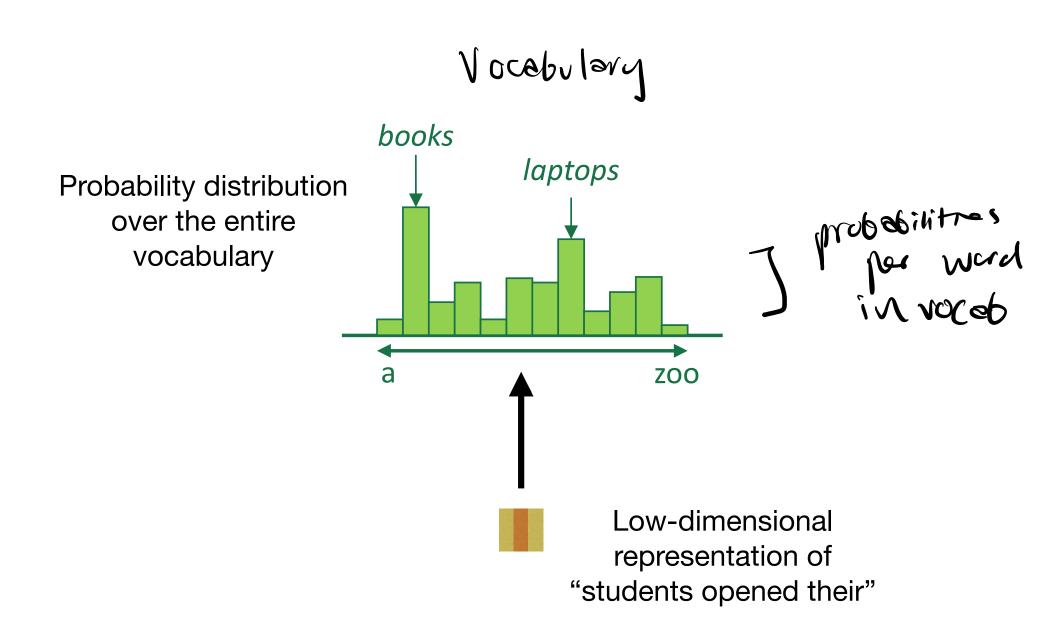


How does this happen? Let's work our way backwards, starting with the prediction of the next word

How does this happen? Let's work our way backwards, starting with the prediction of the next word

Softmax layer:

convert a vector representation into a probability distribution over the entire vocabulary



Let's say our output vocabulary consists of just four words: "books", "houses", "lamps", and "stamps".

We want to get a probability distribution over these four words

Let's say our output vocabulary consists of just four words: "books", "houses", "lamps", and "stamps".

books houses lamps stamps <0.6, 0.2, 0.1, 0.1>

We want to get a probability distribution over these four words

start with a small vector representation of the sentence prefix

Low-dimensional representation of "students opened their"

just like in regression, we will learn a set of weights

Low-dimensional representation of "students opened their"

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\}$$

first, we'll project our
3-d prefix
representation to 4-d
with a matrix-vector
product

$$\mathbf{x} = \langle -2.3, 0.9, 5.4 \rangle$$

Here's an example 3-d prefix vector

intuition: each row of **W** contains feature weights for a corresponding word in the vocabulary

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\} \begin{array}{l} books \\ houses \\ lamps \\ stamps \\ stamps \end{array}$$

$$\mathbf{x} = \langle -2.3, 0.9, 5.4 \rangle$$

intuition: each dimension of **x** corresponds to a *feature* of the prefix

intuition: each row of **W** contains feature weights for a corresponding word in the vocabulary

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\} \begin{array}{l} books \\ houses \\ houses \\ hamps \\ stamps \\ stamps \end{array}$$

CAUTION: we can't easily interpret these features! For example, the second dimension of **x** likely does not correspond to any linguistic property

$$\mathbf{x} = \langle -2.3, 0.9, 5.4 \rangle$$

intuition: each dimension of **x** corresponds to a *feature* of the prefix

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\}$$

now we compute the output for this layer by taking the dot product between x and W

Wx = <1.8, -11.9, 12.9, -8.9>
How did we compute this? Just the dot product of each row of
$$\mathbf{W}$$
 with \mathbf{x} !

The production of the pro

How did we compute this? Just the dot product of each row of W with x!

books
$$1.2*-2.3$$

houses $+-0.3*0.9$
 $+0.9*5.4$

Softmax!

Okay, so how do we go from this 4-d vector to a probability distribution?

W*x* = <1.8, -11.9, 12.9, -8.9>

$$\mathbf{W}\mathbf{x} = \langle 1.8, -11.9, -12.9, 48.9 \rangle$$

RESULT: 60.6, 0.2, 0.1, 0.1>

Given a *d*-dimensional vector representation **x** of a prefix, we do the following to predict the next word:

- 1. Project it to a *V*-dimensional vector using a matrix-vector product (a.k.a. a "linear layer", or a "feedforward layer"), where *V* is the size of the vocabulary
- 2. Apply the softmax function to transform the resulting vector into a probability distribution

So far, this is just multi-class regression on word embeddings!

Now that we know how to predict "books", let's focus on how to compute the prefix representation \boldsymbol{x} in the first place!

Composition functions

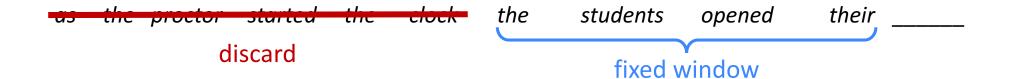
input: sequence of word embeddings corresponding to the tokens of a given prefix

output: single vector

- Element-wise functions
 - e.g., just sum up all of the word embeddings!
- Concatenation
- Feed-forward neural networks
- Convolutional neural networks
- Recurrent neural networks
- Transformers

Let's look first at *concatenation*, an easy to understand but limited composition function

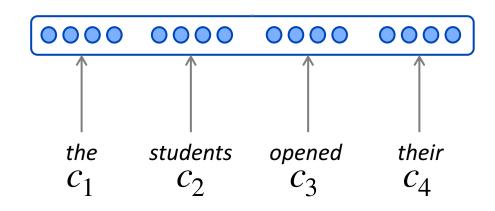
A fixed-window neural Language Model



concatenated word embeddings

$$x = [c_1; c_2; c_3; c_4]$$

words / one-hot vectors c_1, c_2, c_3, c_4



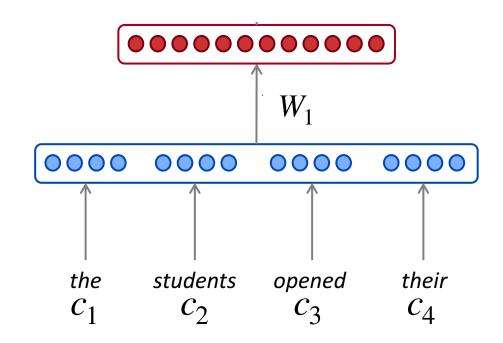
hidden layer

$$h = f(W_1 x)$$

concatenated word embeddings

$$x = [c_1; c_2; c_3; c_4]$$

words / one-hot vectors C_1, C_2, C_3, C_4



f is a nonlinearity, or an element-wise nonlinear function. The most commonly-used choice today is the rectified linear unit (ReLu), which is just ReLu(x) = max(0, x).

Other choices include tanh and sigmoid.

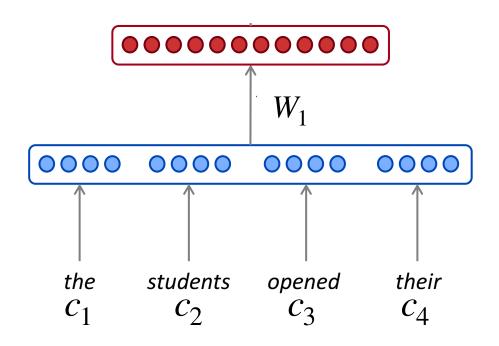
hidden layer

$$h = f(W_1 x)$$

concatenated word embeddings

$$x = [c_1; c_2; c_3; c_4]$$

words / one-hot vectors C_1, C_2, C_3, C_4



output distribution

$$\hat{y} = \text{softmax}(W_2 h)$$

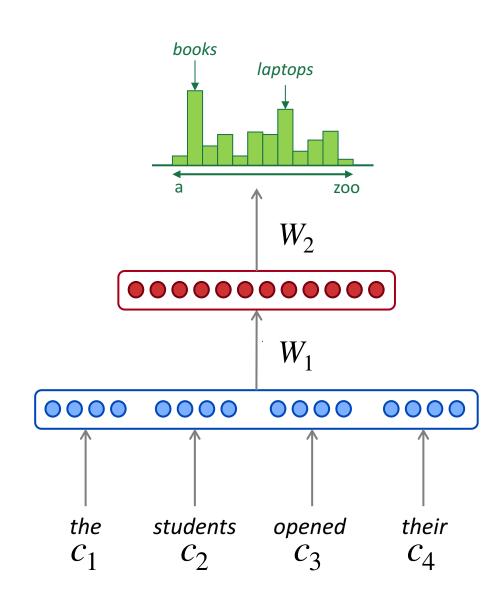
hidden layer

$$h = f(W_1 x)$$

concatenated word embeddings

$$x = [c_1; c_2; c_3; c_4]$$

words / one-hot vectors C_1, C_2, C_3, C_4



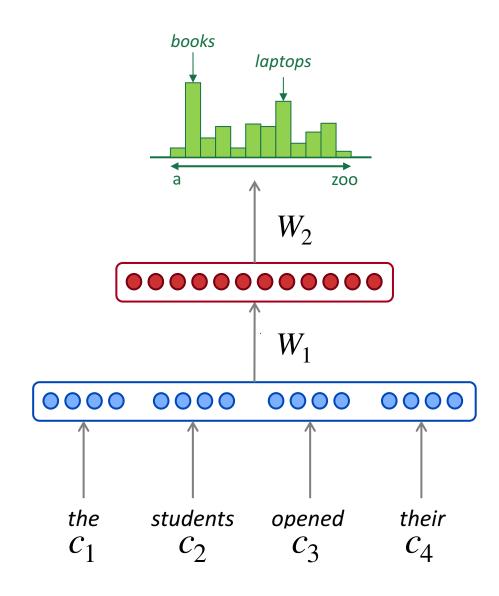
how does this compare to a normal n-gram model?

Improvements over *n*-gram LM:

- No sparsity problem
- Model size is O(n) not O(exp(n))

Remaining **problems**:

- Fixed window is too small
- Enlarging window enlarges $oldsymbol{W}$
- Window can never be large enough!
- Each c_i uses different rows of W. We don't share weights across the window.



Recurrent Neural Networks

the cat sat here cot set the here opened their students

Midden states

$$h(t) = f(W_h, h + h_0)$$

We ct)

word embeddings

 c_1, c_2, c_3, c_4

what is f ?

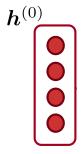
Non-linear remember f

We the rament about une students

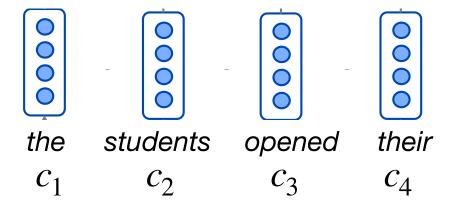
hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!



$$c_1, c_2, c_3, c_4$$

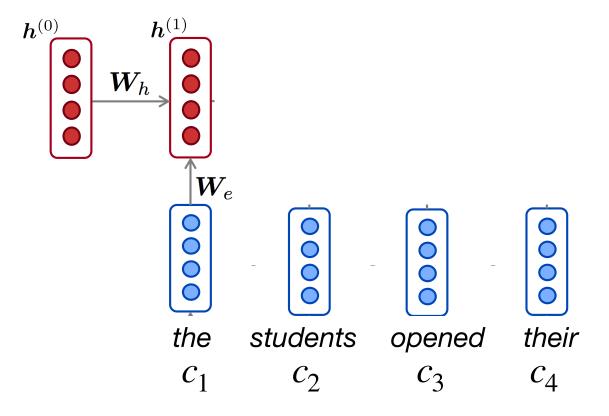


hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$

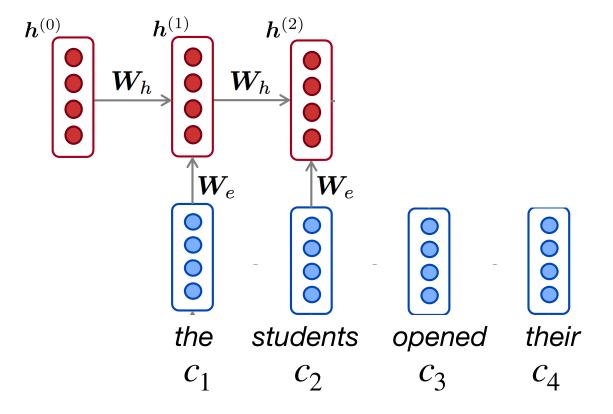


hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$

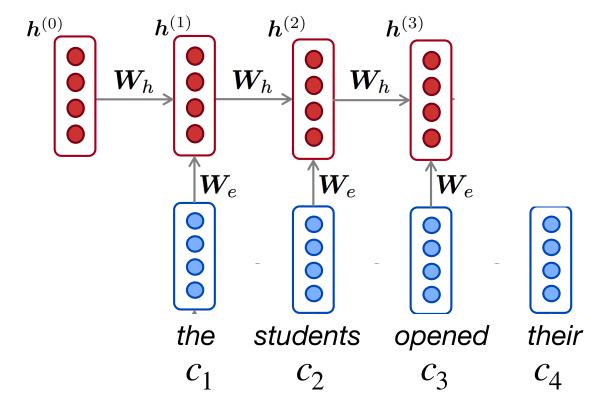


hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$

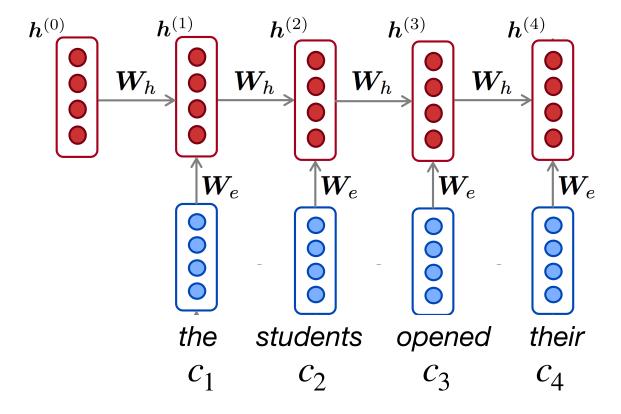


hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$



output distribution

$$\hat{y} = \text{softmax}(W_2 h^{(t)})$$

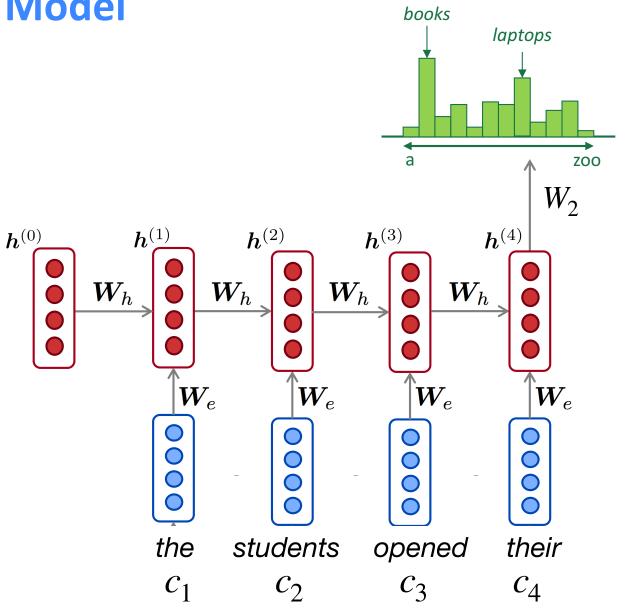
hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

word embeddings

$$c_1, c_2, c_3, c_4$$



 $\hat{\boldsymbol{y}}^{(4)} = P(\boldsymbol{x}^{(5)}|\text{the students opened their})$

Training a Recurrent Neural Network