CS 333:

Natural Language Fall 2025
Processing

Prof. Carolyn Anderson
Wellesley College

Reminders

Midterm 2 is next Friday!
- The exam is open-note but closed-device
- List of topics posted on the course website.

No quiz on Tuesday

Tuesday -> Monday cycle for final two assignments:

- HW 7 will be released next Friday but it is not due
until Monday, 11/17

- HW 8 will be released on Tuesday, 11/18 and due on
Monday, 11/24

My next help hours: Monday 4-5:30

* CSFALL '!‘i*-?”
COLLOQUIUM SERIES ' W

DESIGNING
POSITIVE FUTURES
FOR IN
SOCIALLY COMPLEX

WORK WITH AND
FOR WORKERS

Date: Oct 31st,
12:45 - 2:00pm

Location: Sci H-105
https://bit.ly/CSKawakami

Accessibility and Disability:
2
AL HO accessibility@wellesley.edu

Lindsey Cameron Colloquium

November 14th, 3:45-5pm in H105

Title: Scalable Subjugation: The Myth of Geographic
Scalability in the Gig Economy and How Workers
Reconstitute Platforms

NEW RESEARCH IN RELIGIOUS STUDIES

Hinduism Online:
Mechanized Murti and
Automated Adoration

Presented by Dr. Holly Walters

Department of Anthropology

SCAN QR CODE
TO RSVP

Tuesday, November 4th at 5pm
FND 120

WELLESLEY

exp: 11/5 ;5<; ADR:
?: mkll0@wellesley.edu accessibility@wellesley.edu

Neural Language Models

language model review

* Goal: compute the probability of a sentence or
sequence of words:

P(W) = P(W{,W,,W3,W,,We.. W,)

*Related task: probability of an upcoming word:

P(W5|Wq,W;,W3,Wy)

* A model that computes either of these:
P(W) or P(w,|w,,w,..w_,) 1S called a language model or LM

n-gram models

count(students opened their w))

p(w; | students opened their) = ,
count(students opened their)

Slides adapted from Mohit Iyyer

Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w;” never
occurred in data? Then w;
has probability O!

count(students opened their w))

p(w;| students opened their) = .
count(students opened their)

Slides adapted from Mohit Iyyer

Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w;” never
occurred in data? Then w;
has probability 0!

(Partial) Solution: Add small §
»| to count for every w; € V.
This is called smoothing.

count(students opened their w;)

p(w; | students opened their) = _
count(students opened their)

Slides adapted from Mohit Iyyer

Problems with n-gram Language Models

Storage: Need to store count
for all possible n-grams. So
model size is O(exp(n)).

count(students opened their wﬂ

P(w;|students opened their) =
(w] P) count(students opened their)

Increasing n makes model size huge!

Slides adapted from Mohit Iyyer

another issue:

e \We treat all words / prefixes independently of
each other!

students opened their ___ Shouldr’t we share

pupils opened their ___ information across these

. semantically-similar prefixes?
scholars opened their i -

undergraduates opened their
students turned the pages of their ___

students attentively perused their

Slides adapted from Mohit Iyyer

Why Neural LMs work better than N-gram LMs

Training data:

We've seen: I have to make sure that the cat gets fed.
Never seen: dog gets fed

Test data:

[forgot to make sure that the dog gets ___

N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat” and "dog"
embeddings to generalize and predict “fed” after dog

Neural Net Classification with embeddings as input features!

p(positive sentiment|The dessert is...)

Output layer @
sigmoid

U Vixd,
Hidden layer @/ @ @ . oo dp, X1

W Wi dhX3d

PrOjeCtiOq layer e @ oo ..] ©Q e @ oo .\‘] [.‘ oo . oo ..] 3dx1
embeddings “ T ‘[

embedding for ~ embedding for embedding for
word 534 word 23864 word 7

The dessert E

W1 W) W3

Issue: texts come in different sizes

(@6 - @ --00) (@ ++ @ + 00 @@ ++ @ -+ 00)

This assumes a fixed size length (3)] weds™ meddrelr o™
\ | |

The dessert is

Wi W) W3

Some simple solutions (more sophisticated solutions later)
1. Make the input the length of the longest review _ ~

» If shorter then pad with zero embeddings Ay e
» Truncate if you get longer reviews at test time J C“”WL
— i3

2. Create a single "sentence embedding" (the sa

dimensionality as a word) to represent all the words
» Take the mean of all the word embeddings

» Take the element-wise max of all the word embeddings
« For each dimension, pick the max value from all words

composing embeddings

* neural networks compose word embeddings into
vectors for phrases, sentences, and documents

CDVV'/}U("MJ: ,- CM(/&"‘C/{/L%M
2. NV 'vlj

neural students opened their

network (§ I B = |

Predict the next word from
composed prefix representatl

predict “books”

neural students opened their T

network (|

B W)=

On

How does this happen”? Let’s work our
way backwards, starting with the
prediction of the next word

predict “books”

|

How does this happen”? Let’s work our
way backwards, starting with the
prediction of the next word

predict “books”

B
oA
)

Softmax layer:
convert a vector representation
iINto a probability distribution
over the entire vocabulary

\[0By \@Wl

books
Probability distribution l laptops
over the entire l Gkl
vocabulary ,3 W ‘\9.1 e
] - WA NoCsb
< >
a Z00
I Low-dimensional

representation of
“students opened their”

Let’s say our output vocabulary
consists of just four words: “books”,
“houses”, “lamps”, and “stamps”.

s : We want to get
S¢S 5 e want to get a
bOOks e \QW(, probability

¢ 0.6 , 0.Z¢, 6.|J 0.\ 7 distribution over

these four words

Let’s say our output vocabulary
consists of just four words: “books”,
“houses”, “lamps”, and “stamps”.

2
<0.0, 0.2, 0.1, 0.1> We want to get a
probability
distribution over
these four words

e® o 2
900\(\6 o & «

Low-dimensional

start with a small representation of

vector representation “students opened their”
of the sentence prefix

ELEA

Low-dimensional

just like in regression, representation of
we will learn a set of “students opened their”
weights

1.2, -0.3, 0.9

0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

X =<-2.3,0.9 54>

first, we’'ll project our
3-d prefix

representation to 4-d

with a matrix-vector
product

Here’s an example 3-d
prefix vector

intuition: each row
of W contains
feature weights for a
corresponding word
INn the vocabulary

O

1.2, -0.3, 0.9 Y o
S

0.2, 0.4, 2.2 (&
8.9, -1.9, 6.5 \,&@Q&
45, 2.2, 01 4 5

X =<-2.3,0.9 54>

Intuition: each
dimension of x
corresponds to a
feature of the prefix

CAUTION: we can’t
inturtion: each row easily interpret these
of W contains features! For example,
feature weights for a the second dimension
corresponding word of x likely does not
INn the vocabulary y
correspond to any

ot S
®)
12 .03, 0.9 \© e linguistic property

0.2, 0.4, 2.2 L®
8.9, -1.9, 65 [
45, 22, -0.1 & o

iIntuition: each

dimension of x
x=<-2.3,09, 04> corresponds to a

feature of the prefix

1.2, -0.3, 0.9

0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

X =<-2.3,0.9 54>

now we compute the output
for this layer by taking the
dot product between x and W

\I\(J\"So') \gv\\&] S

! ' How did we compute
Wx = <1.8,-11.9, 12.9, -8.9> his? Just the dot product

| of each row of W with x!
bool< v\v sF 3 ,,(.vr\uvw
ﬂoob
1.2, 1.27*-2.3
0.2, + '03 * 09
W = 39 +09*54
4.5,

X =<-2.3 09, 54>

Okay, so how do we go
from this 4-d vector to a
probability distribution?

Wx =<1.8,-11.9, 12.9, -8.9>

.12
Wx =<1.8,-11.9,-12.9, 48.9>

O
RESULT: <0.6, 0.2,0.1,0.1>

Given a d-dimensional vector
representation x of a prefix, we do the
following to predict the next word.:

1. Project it to a V-dimensional vector using a
matrix-vector product (a.k.a. a “linear layer”, or a
“feedforward layer”), where V' is the size of the
vocabulary

2. Apply the softmax function to transform the
resulting vector into a probability distribution

So far, this is just multi-class regression on word embeddings!

Now that we know how to predict “books”,
let’s focus on how to compute the prefix
representation x in the first place!

neural students opened their

network (| g - BEY

Composition functions

Input:. sequence of word embeddings corresponding to
the tokens of a given prefix

output: single vector

e Element-wise functions
* e.9., just sum up all of the word embeddings!
e (Concatenation
e [eed-forward neural networks
e (Convolutional neural networks
e Recurrent neural networks
e [ransformers

Let’s look first at concatenation, an easy to
understand but [Imited composition function

A fixed-window neural Language Model

Se——re—procior—Storico——ae———croo— the students opened their
\

J

Y

discard fixed window

A fixed-window neural Language Model

concatenated word embeddings

(0000 0000 0000 0000]

x = [cy; 095 ¢35 ¢4] T] T T

words / one-hot vectors the students opened their
C1» Cy, C3, Cy Ci C, Cs Cy

A fixed-window neural Language Model

hidden layer

concatenated word embeddings

X = [cq; ¢y 035 ¢4)

words / one-hot vectors
C15 €, €3, Cy

(ecc000000000)]

N

W,

(0000 0000 0000 0000]

1]

the students opened their
Cq Cr Cs Cy

A fixed-window neural Language Model

f1s a nonlinearity, or an element-wise nonlinear function.
The most commonly-used choice today is the rectified
linear unit (ReLu), which is just ReLu(x) = max(0, x).
Other choices include tanh and sigmoid.

hidden | -
e TVEr (e00000000000)]

h = f(W,x) 1

W,

concatenated word embeddings

(0000 0000 0000 0000]

x = [cy; 095 ¢35 ¢4] T] T]

words / one-hot vectors the students opened their
Cl’ 62, C3, C4 Cl C2 C3 C4

A fixed-window neural Language Model

output distribution

y = softmax(W,h)

hidden layer

concatenated word embeddings

X = [cq; ¢y 035 ¢4)

words / one-hot vectors
C15 €, €3, Cy

books
laptops

[»
(000000000000 |
W,

(0000 0000 0000 0000]

LT

the students opened their
Cq Cr Cs Cy

how does this compare to a
normal n-gram model?

Improvements over n-gram LM:

No sparsity problem
Model size is O(n) not O(exp(n))

Remaining problems:

Fixed window is too small
Enlarging window enlarges W
Window can never be large
enough!

Each ¢C; uses different rows
of W. We don’t share weights
across the window.

books
laptops
2 200
T W,
(000000000000 |
N
W,

(0000 0000 0000 0000]

LT

the students opened their
C 1 C2 C 3 C 4

Recurrent Neural
Networks

e cat Sef o

A RNN Language Model Lot sef fre ferx

A VA Dﬂ n \-\H”nhh
\i ddan St m o "' o
SNl “ h3 ™ h\\
h | f
(+) : Wh
h _ ((] *)
= TUW, 7 L
We Cy) ’
e “~t e N
| o B
word embeddings @) O
C1, Cy, C3, Cy E é
the studerits opened their

~ ek S ;, ? A (v ¢ ¢ s c

Non - (Weas MW aheX

QNehian “ XN\, Srudonts l'\z’f(l\\h‘l'\"*\de'cz)

N

A RNN Language Model

ho_
hidden states :
D = fW,hD + We) 0
@
hO is initial hidden state! —
B
word embeddings 8
C1, €2, €3,y O
——
the

students

C

(0000}

[\

opened

C

0000}

3

(0000}

their
C

~

A RNN Language Model

hO__ R
hidden states @ @
t —1) | W, | @
hY = fW,h"D + We) 0 @
e @ @
h© is initial hidden state! — 5
W,
) —
o @)
word embeddings @ o
o @)
€1, €2, €3, Cy O O
—a —/

the students
o C

[\

opened

C

0000}

3

(0000}

their
C

~

A RNN Language Model

MO R A
hidden states @ @ O
" (1) @ Wr 0| W, |@
RO = AW,AD + Woe) o e[e
e @ @ @
h©) is initial hidden statel — N .
W, W,
O Q) Q)
word embeddings 8 O O
C1, €, €3,y O 8 8
— -— -—

the students opened
¢1 ¢ 3

(0000]

their
C

~

A RNN Language Model

h©)__ h(})—~ h(2) h3)

hidden states @ @ @ O

" -1) e\ W, || W, |@| Wr |@

h =f(Whh + Wect) O 1@ 1@ 1@

e @ @ @ O

h©) is initial hidden statel — N N N
W, W, W,

word embeddings 8 O O

C1, €, €3,y O 8 8

— -— -—

the students opened
¢1 ¢ 3

(0000]

their
C

~

A RNN Language Model

h(0) h) h(2) h3) h4)

hidden states @ @ @ T T

" (1) @ W, |10 Wi @ Wi |0 Wr |@

h =f(Whh + Wect) O 1@ 1@ 1@ 1@

e @ @ O O O

h©) is initial hidden statel — e —— - —
W, W, W, W,

word embeddings 8 O O O

o @) o

——’ — - ~—

the students opened their
o Cy C3 C

~

94 = P(x®|the students opened their)

A RNN Language Model books
laptops
output distribution
$ = softmax(W,h?) : m
A Z00
W2
h©)__ h_ h(2) h3) h4)
hidden states @ @ @ O @
(t) (t—1) o W, |0 W, e Wi @ Wr @
hO = f(W,hD + W) o o le| le[e
T @ @ O O O
h© is initial hidden state! — . — — —
W. W, W, W,
word embeddings 8 Q @) Q
@) @) @)
——’ — - ~—

the students opened their
o Cy C3 C

~

why is this good?

RNN Advantages:

Can process any length
input

Model size doesn’t
increase for longer input
Computation for step t
can (in theory) use
information from many
steps back

Weights are shared
across timesteps 2>
representations are
shared

RNN Disadvantages:

Recurrent computation
is slow

In practice, difficult to
access information from

_many steps back

94 = P(x®)|the students opened their)

books
laptops
: 700
W2
h©)__ h) h(2) h3) h(4)
@ @ O) @
@ W, (06| Wi l@| Wr |@| Wr |@®
@ 1@ | @ 1@ 1@
(] @ (] @ @
— A Y
W, W, W, W,
O O O O
@)) @) @) @)
O O O O
! — S —
the students opened their

Training a Recurrent
Neural Network

T
r
a
in
1n
8
a
n
R
NN
I
|
3
oV
h(]
W
e(
)
.‘,

=,
W
> ()
.,
— (9
0,
Wi b,)

I
2
= §
anh (
W
eC

8
W
e
(©
I\Ne
hSEL\M\Q
;:‘j
S\a
)

St
den
B
OW
L
O
o

Key Question: what are the parameters?

