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Reminders
✦ Tuesday -> Monday cycle for final two assignments:

- HW 7 is due on Monday, 11/17
- HW 8 will be released on Tuesday, 11/18 and due on 

Monday, 11/24
✦ My next help hours: Thursday 4-5
✦ Two CS Colloquia upcoming!



HW	7:	Evaluating	LLMs
In this assignment, you will practice evaluating LLMs. 
You’ll work with Llama 1B, and test its capabilities on 
two tasks: Pig Latin decoding, and common-sense 
reasoning.

The assignment also asks you to do some setup work 
for HW 8, and to describe your final project topic.





Two	ML	talks	for	the	price	of	one:	

Thursday	Nov.	20	at	12:45-1pm	in	H-105	

Co-designing	Tools	to	Measure	Student	Learning	with	
Machine	Learning	and	Science	Education	Research	

Dr.	Kaitlin	Gili	

Subgroup	Validity	in	Machine	Learning	for	
Echocardiogram	Data	
Cynthia	Feeney	



HW	6	Curiosity	Points
✦ Model experimentation:

- Comparison of non-linear activation functions
- Experiments with model architecture changes

✦ Analysis:
- Dimensionality reduction and visualization of learned 

embeddings
- Visualization of model performance

✦ Literature exploration:
- Read related work on non-linear activation functions, music 

understanding, neural network models at Google, class 
imbalance, and BERT models

✦ New tasks:
- Scraping lyrics from new artists
- Lyric guessing game
- Song year prediction task



Recap



Title	Text
“you can’t cram the meaning 

of a whole  %&@#&ing 
sentence into a single 

$*(&@ing vector!” 
— Ray Mooney (NLP professor at UT Austin)

14 Slides adapted from Mohit Iyyer
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Title	TextThe solution: attention

• Attention mechanisms (Bahdanau et al., 
2015) allow language models to focus on a 
particular part of the observed context at 
each time step 
• Originally developed for machine translation, and 

intuitively similar to word alignments between 
different languages

17 Slides adapted from Mohit Iyyer
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Sequence-to-sequence with attention

2/15/1854

En
co

de
r 

RN
N

Source sentence (input)

<START>les    pauvres sont démunis

Decoder RNN
At

te
nt

io
n 

sc
or

es

On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (”les”)

At
te

nt
io

n 
di

st
rib

ut
io

n

Take softmax to turn the scores 
into a probability distribution

the   students  opened  their books

Compute softmax over the 
dot products to turn them 

into a probability distribution

At this time step, the attention 
distribution is focused on the first 

word of the sequence (“the”)

Attention mechanisms in neural language models



Title	Text

23
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Attention is great

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see 

what the decoder was focusing on
• We get alignment for free!
• This is cool because we never explicitly trained

an alignment system
• The network just learned alignment by itself
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aj=i 
•  used in all IBM models 
•  a is vector of length J 
•  maps indexes j to indexes i 
•  each aj 
 {0, 1 … I} 
•  aj = 0 	 fj is �spurious� 
•  no one-to-many alignments 
•  no many-to-many alignments 
•  but provides foundation for 

phrase-based alignment 
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Choose length J for French sentence 

For each j in 1 to J: 

–  Choose aj uniformly from 0, 1, … I 

–  Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 
how to do this 

Want: P(f|e) 

IBM Model 1 parameters 
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Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 



Variants	of	AttentionMany variants of attention
• Original formulation:  

• Bilinear product:  

• Dot product: 

• Scaled dot product:

27

a(q, k) = wT
2 tanh(W1[q; k])

a(q, k) = qTWk

a(q, k) = qTk

a(q, k) = qTk
|k |

Luong et al., 2015

Luong et al., 2015

Vaswani et al., 2017
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