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Rerelease AITA data



Reminders
✦ Tuesday -> Monday cycle for final two assignments:

- HW 7 is due on Monday, 11/17
- HW 8 will be released on Tuesday, 11/18 and due on 

Monday, 11/24
✦ My next help hours: Monday 4-5:30





Two	ML	talks	for	the	price	of	one:	

Thursday	Nov.	20	at	12:45-1pm	in	H-105	

Co-designing	Tools	to	Measure	Student	Learning	with	
Machine	Learning	and	Science	Education	Research	

Dr.	Kaitlin	Gili	

Subgroup	Validity	in	Machine	Learning	for	
Echocardiogram	Data	
Cynthia	Feeney	
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Scaling	Up	Self-Attention
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Transformers How Do we make predictions
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We can parallelize in training

compute 2 22 23 in parallel
Can we also parallelize at test time
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Blocks	in	a	Seq2Seq	Transformer:
Encoder:

Decoder:

Unmasked self attention

Concat
Feedforward

Masked self attention Both
Concat Masked

Feed toward EEention

Cross attention black
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Newer Solution: Rotary Positional Embeddings (RoPE)

Key Idea: instead of adding a positional embedding, 
rotate the word embedding.

The angle of rotation (θ) is proportional to the word’s 
position in the sentence.

Su et al. (2023)

Two advantages: 1) efficient caching and 2) preserves 
cosine similarity between rotated embeddings at the 
same relative distance.
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Do Positional Embeddings Actually Matter?
5034 words

5017 words













Types of Transformers

Decoder only GPT models Llama models

Jamatan Useful for generating text


