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Reminders
✦ HW 8 will be released 

on today and due on 
Monday, 11/24

✦ My next help hours: 
Thursday 4-5

✦ Imposter Syndrome 
Survey (help out Sohie!): 
https://cs.wellesley.edu/
~slee/imposterSyndrome

Prof VanHattom
is running a Coding

Workshop on Thursday

https://cs.wellesley.edu/~slee/imposterSyndrome
https://cs.wellesley.edu/~slee/imposterSyndrome


The	Deep	Learning	
Pipeline



The	Deep	Learning	Pipeline
Deep learning models can be run in two modes:

✦  Training: update a model’s weights to fit new data. This is 
supervised learning because it requires input/output pairs 
(labeled data).

✦ Inference: run data through a model to make predictions. 
This requires only input data. It does not change the model 
weights.



Transfer	Learning
Contemporary machine learning often involves multiple 
stages of training: 

✦  Pre-training: train a large model that will be used by many 
downstream applications 
Called a foundation model in Bommasani et al. 2021

✦ Fine-tuning: adapting a pre-trained model to a new task or 
dataset by training it on new data, starting from existing 
weights.

✦ Prompt Engineering: framing a task so that it can be 
solved by a pretrained language model.

✦

Meta model public
Queen models

https://arxiv.org/search/cs?searchtype=author&query=Bommasani%2C+R


Transfer	Learning
Contemporary machine learning models may also build upon 
other models by freezing the weights of the original model 
and taking some of its components as input.

For instance, the weights of attention heads may be re-used 
as embeddings to be fed in as input to a downstream model.

This is called feature extraction.

This is what we did in the recipe classifier: we took attention weights from 
RoBERTa to use as features in our classifier!



Pretraining: 
learn good 
representations via 
an unlabeled task.

Finetuning: 
train some more on 
in-domain data or 
separate labeled 
task

Prompt 
engineering: 
craft prompts that 
disguise task of 
interest as a language 
generation problem.

Representation 
learning: 
extract attention 
features and use as 
input features to 
another model

Few-shot	learning

Zero-shot	learning

Q/A

Google	Search

Code	generation

Coreference	resolution
Translation

ClassiPication

Summarization

Style	Transfer

Image	Captioning

Poem	generation

Story	generation

Today

Today



Representation	Learning



Devlin et al. 2019

BERT: Bidirectional Encoder 
Representations for Transformers



Why BERT?

It’s an early one!

0



Pre-Training BERT Tasks

(1) Masked Language Model

(2) Next Sentence Prediction

Devlin et al. 2019



Masked Language Model Procedure

Example: my dog is hairy

• 80% of the time: Replace the word with the [MASK] token
my dog is [MASK]

• 10% of the time: Replace the word with a random word
my dog is apple

• 10% of the time: Keep the word unchanged
my dog is hairy

Devlin et al. 2019

my dog is MASK and I

my dog is apple

my dog is hairy



Masked Language Model Procedure

Example: my dog is hairy

• 80% of the time: Replace the word with the [MASK] token
my dog is [MASK]

• 10% of the time: Replace the word with a random word
my dog is apple

• 10% of the time: Keep the word unchanged
my dog is hairy

Devlin et al. 2019

Bidirectional language modeling

Mitigate mismatch between
pre-training & fine-tuning



Pre-Training BERT: NSP

Idea: Predict whether sentence B follows sentence A using the 
final embedding of the [CLS] token

Devlin et al. 2019



BERT	as	Representation	Learner
✦ By training on these tasks, which are self-supervised 

(labels for free), BERT learns good representations of 
word meaning. 

✦ We can then extract word embeddings from BERT by 
taking the hidden state activations from the last layer (or 
from all layers).

✦ These embeddings can be used as input to another 
model or we could use them directly to evaluate textual 
similarity.



Example	Application

https://github.com/booknlp/booknlp


Fine-tuning



Fine-tuning	=	Further	training

Fine-tuning: 
train some more on 
in-domain data or 
separate labeled 
task

Simple 
Fine-tuning



Pre-Training vs. Fine-Tuning

Devlin et al. 2019



Same internal architecture

Devlin et al. 2019



Different output layers & loss functions

Devlin et al. 2019



Fine-Tuning

Use pre-trained model parameters for initialization
Change pre-training output layers of BERT to suit task

Devlin et al. 2019



Fine-Tuning

Sentence Pair 
Classification

Single Sentence 
Classification

Question 
Answering

Single Sentence 
Tagging

Devlin et al. 2019



Fancy	Fine-tuning



Simple	Fine-tuning	Limitations
✦ Lack of computational resources: what if the model is too 

big for you to train?



Simple	Fine-tuning	Limitations
✦ Lack of computational resources: what if the model is too 

big for you to train?

You could fine-tune BERT for your final project, but you 
could not fine-tune Llama 8B…



Simple	Fine-tuning	Limitations
✦ Lack of computational resources: what if the model is too 

big for you to train?

✦ Lack of data: what if you can’t find labeled data for your 
specific task?



Fine-tuning	=	Further	training

Fine-tuning: 
train some more on 
in-domain data or 
separate labeled 
task

Simple 
Fine-tuning

Proxy 
Tuning

Reinforcement 
Learning

Just train on

on more data

If model is too big
fincture a small
model use it
to steer the large

model

Tune a model
w a reward function



Proxy	Tuning



Quick	Refresher:	Embedding	Analogies
Back when we learned Word2Vec, we briefly talked about 
embedding analogies. 

The idea is that there are reliable geometric relationship 
between embeddings that correspond to certain word 
relationships.



Proxy	Tuning
Proxy tuning is a new technique useful when you have 
enough resources to fine-tune a small model, but not enough 
to fine-tune a larger model that you’re interested in using.

Intuition: 

Fine-tune the smaller model and use the difference in its  
pre/post fine-tuning predictions to alter the larger model’s 
predictions.

Important Models need the same tokenizer



Proxy	Tuning	Paper



Intuition:	Steering	a	Larger	Model



What	We	Need
✦ A small model that we can finetune

✦ A dataset to finetune on

✦ A large pretrained model that gives us access to its logits



Models
Expert Mt finetened small model

Antiexpert M base small model

Model M base large model



How	to	Steer
At each timestep (each prediction site):

✦ Retrieve the logits from the expert:

✦ Retrieve the logits from the antiexpert:

✦ Take the difference between the two:

✦ Retrieve the logits from the model:

✦ Apply the difference to the model logits:

✦ Softmax to obtain the steered prediction

Smt
Sm

Sm Sm

Sm

S'm 5m Sm Sm



Intuition:	Steering	a	Larger	Model
Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes 
muffins for her friends every day with four. She sells the remainder at the farmers’ 
market daily for $2 per fresh duck egg. How much in dollars does she make every day at 
the farmers’ market? 
Answer: $1__

Expert: 

Anti-expert:

Large:

Proxy-Tuned:

[1 5 0.5 -1 … ]

[3 3 5.5 -1 … ]

[3 2 0.1 0.5 … ]

6  8  4  0 …

C 22 503

Answer 18

14 4.90.5



Instruction	Proxy-Tuning	Results



Task	Proxy-tuning	Results



HW	8
In HW 8, we will replicate the GSM results from the proxy-
tuning paper, but with smaller models. We will use Llama 
3.2 1B as our expert/antiexpert, and Llama 3.1 8B as our 
larger model.

Three parts:

1. Evaluation: how well do the base models perform on 
GSM?

2. Finetuning: fine-tune an (even smaller) model on GSM

3. Proxy-tuning: steer Llama 3.1 8B with a finetuned Llama 
3.2 1B model.



HW	8
Three parts:

1. Evaluation: how well do the base models perform on 
GSM? Can be done in Colab without GPU access.

2. Finetuning: fine-tune an (even smaller) model on GSM. 
Requires GPU access. Do this on the NSF Delta platform.

3. Proxy-tuning: steer Llama 3.1 8B with a finetuned Llama 
3.2 1B model. Can be done in Colab without GPU access.



Fine-tuning	=	Further	training

Fine-tuning: 
train some more on 
in-domain data or 
separate labeled 
task

Just train on more 
(labeled) data

Simple 
Fine-tuning

Proxy 
Tuning

Reinforcement 
Learning

Fine-tune a smaller 
model and use it 
steer a larger model

Tune the model with 
a reward functionNext class!



Pretraining: 
learn good 
representations via 
an unlabeled task.

Fine-tuning: 
train some more on 
in-domain data or 
separate labeled 
task

Prompt 
engineering: 
craft prompts that 
disguise task of 
interest as a language 
generation problem.

Representation 
learning: 
extract attention 
features and use as 
input features to 
another model

Few-shot	learning

Zero-shot	learning

Q/A

Google	Search

Code	generation

Coreference	resolution
Translation

ClassiPication

Summarization

Style	Transfer

Image	Captioning

Poem	generation

Story	generation

Next class!


