
CS 333:
Natural Language
Processing

Fall 2025

Prof. Carolyn Anderson
Wellesley College

Reminders

- HW 8 will be released on today and due on Monday, 11/24
- My next help hours: Thursday 4-5
- Imposter Syndrome Survey (help out Sohie!):
<https://cs.wellesley.edu/~slee/impostersyndrome>

Prof. Van Harten is running a Coding Workshop on Thursday

CS FALL COLLOQUIUM SERIES

DR. KAITLIN GILI
POSTDOCTORAL RESEARCHER AT TUFTS UNIVERSITY
Co-designing Tools to Measure Student Learning with Machine Learning and Science Education Research

CYNTHIA FEENEY
6TH YEAR PHD CANDIDATE AT TUFTS UNIVERSITY
Subgroup Validity in Machine Learning for Echocardiogram Data

WELLESLEY COMPUTER SCIENCE
Accessibility and Disability: accessibility@wellesley.edu

THURSDAY NOVEMBER 20
2:45-1PM IN H-105

?sb129@wellesley.edu

The Deep Learning Pipeline

The Deep Learning Pipeline

Deep learning models can be run in two modes:

- ◆ **Training:** update a model's weights to fit new data. This is *supervised learning* because it requires input/output pairs (labeled data).
- ◆ **Inference:** run data through a model to make predictions. This requires only input data. It does not change the model weights.

Transfer Learning

Contemporary machine learning often involves multiple stages of training:

- ◆ **Pre-training**: train a large model that will be used by many downstream applications
Called a foundation model in Bommasani et al. 2021
- ◆ **Fine-tuning**: adapting a pre-trained model to a new task or dataset by training it on new data, starting from existing weights.
*Meta models = public
Open models*
- ◆ **Prompt Engineering**: framing a task so that it can be solved by a pretrained language model.

Transfer Learning

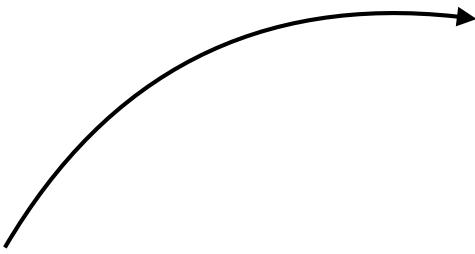
Contemporary machine learning models may also build upon other models by **freezing the weights of the original model** and taking some of its components as input.

For instance, the **weights of attention heads** may be re-used as embeddings to be fed in as input to a downstream model.

This is called **feature extraction**.

This is what we did in the ~~recipe~~ ^{lyric} classifier: we took attention weights from RoBERTa to use as features in our classifier!

Today



Representation learning:
extract attention features and use as input features to another model

Pretraining:
learn good representations via an unlabeled task.

Today

Finetuning:
train some more on in-domain data or separate labeled task

Prompt engineering:
craft prompts that disguise task of interest as a language generation problem.

Google Search
Classification
Image Captioning
Story generation

Few-shot learning

Q/A
Coreference resolution
Translation
Style Transfer

Zero-shot learning

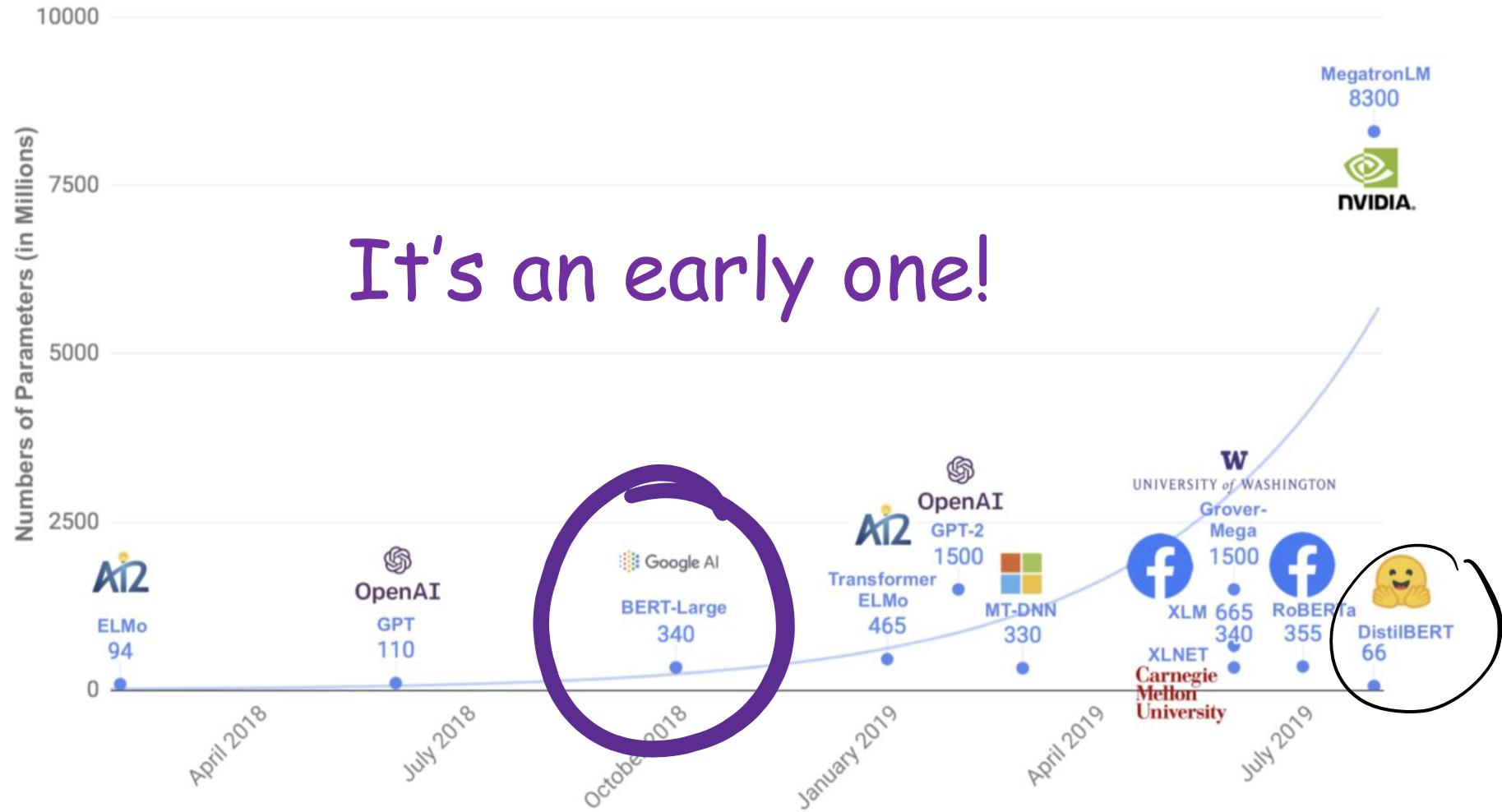
Code generation
Summarization
Poem generation

Representation Learning

BERT: Bidirectional Encoder Representations for Transformers

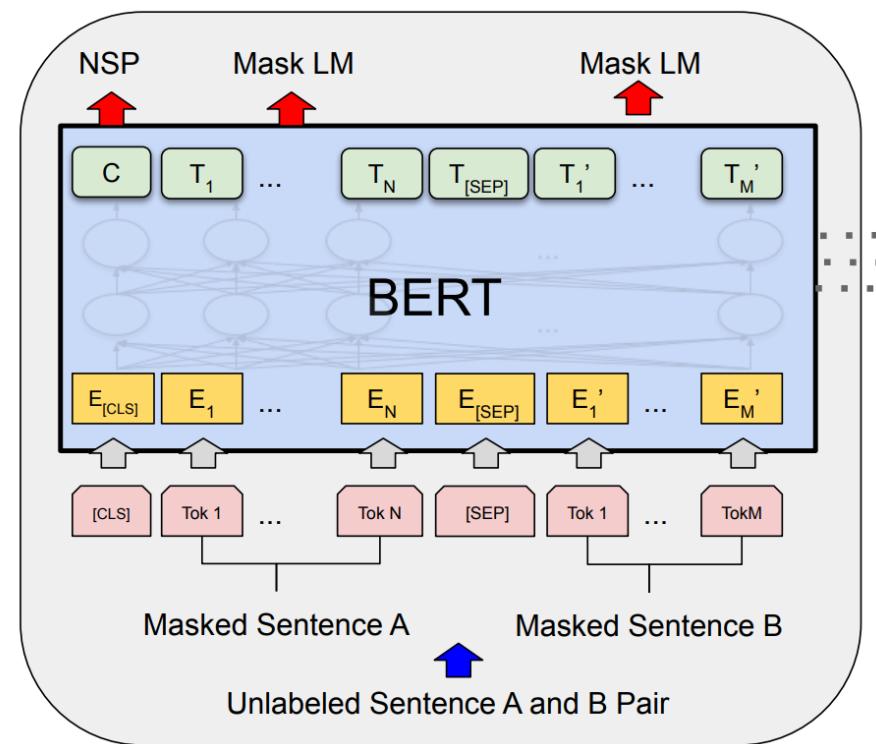
Devlin et al. 2019

Why BERT?



Pre-Training BERT Tasks

- (1) Masked Language Model
- (2) Next Sentence Prediction



Devlin et al. 2019

Masked Language Model Procedure

Example: my dog is hairy

- 80% of the time: Replace the word with the [MASK] token
my dog is [MASK] and I ...
- 10% of the time: Replace the word with a random word
my dog is apple
- 10% of the time: Keep the word unchanged

my dog is hairy

Devlin et al. 2019

Masked Language Model Procedure

Example: my dog is hairy

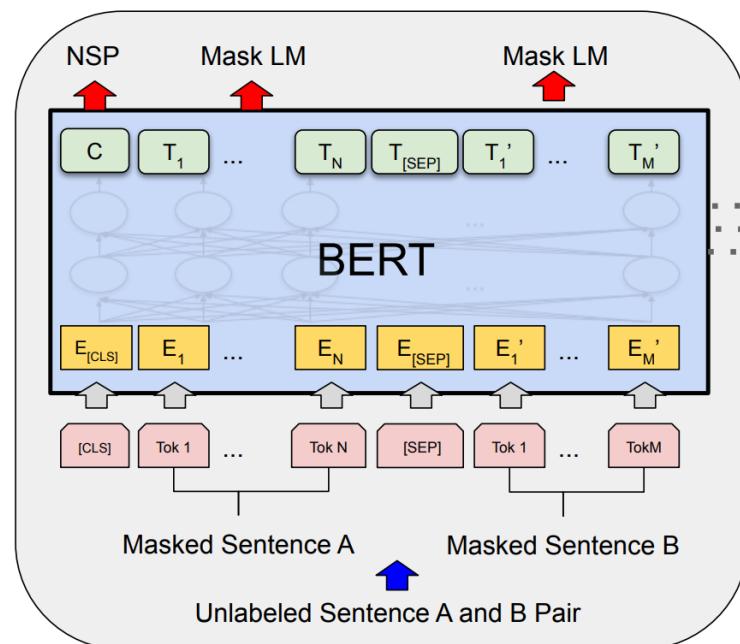
- 80% of the time: Replace the word with the [MASK] token
Bidirectional language modeling
my dog is [MASK]
- 10% of the time: Replace the word with a random word
Mitigate mismatch between
pre-training & fine-tuning
- 10% of the time: Keep the word unchanged

my dog is hairy

Devlin et al. 2019

Pre-Training BERT: NSP

Idea: Predict whether sentence B follows sentence A using the final embedding of the [CLS] token



Devlin et al. 2019

BERT as Representation Learner

- ◆ By training on these tasks, which are self-supervised (labels for free), BERT learns good representations of word meaning.
- ◆ We can then extract word embeddings from BERT by taking the hidden state activations from the last layer (or from all layers).
- ◆ These embeddings can be used as input to another model or we could use them directly to evaluate textual similarity.

Example Application

Evaluating Computational Representations of Character: An Austen Character Similarity Benchmark

Funing Yang and Carolyn Jane Anderson

Wellesley College

Wellesley, MA

carolyn.anderson@wellesley.edu

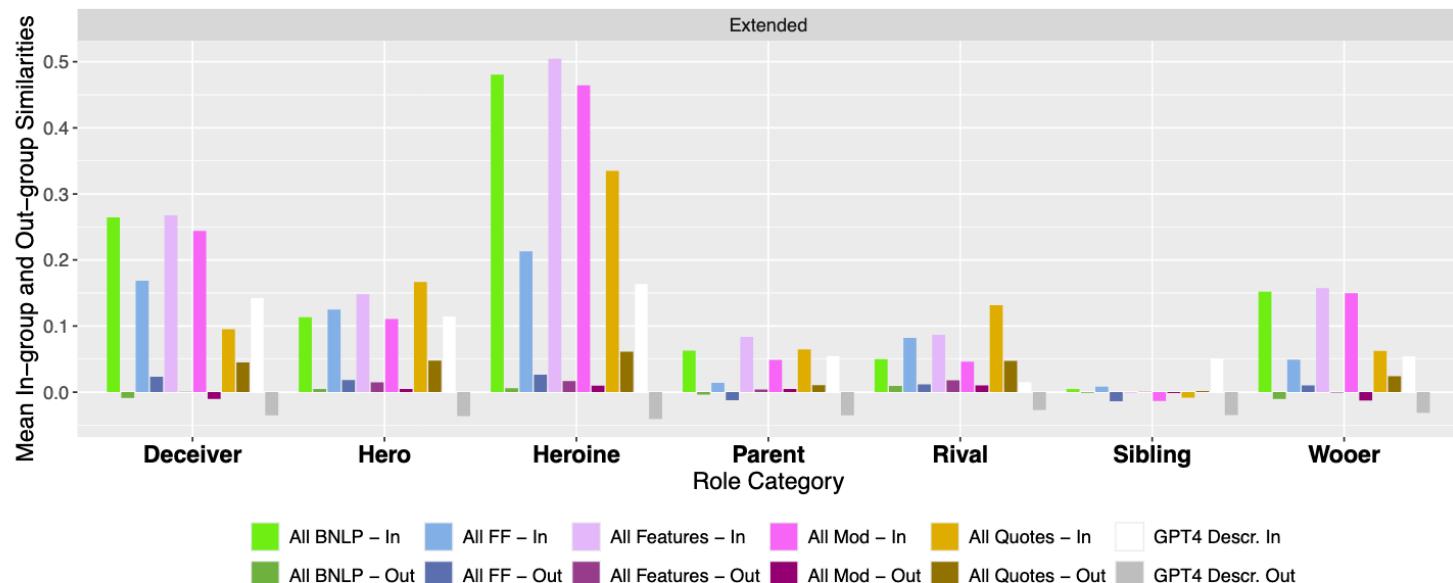
Abstract

Several systems have been developed to extract information about characters to aid computational analysis of narrative. We propose a new evaluation task for AustenAlike, a large-scale system for character similarity in Jane Austen novels. The benchmark draws on the concept of narrative role: a structural

James Morland from *Northanger Abbey*

Sibling to heroine and single 20-year-old male clergy with income of £400/year

Social Pairings: Charles Hayter, Edward Ferrars,



BookNLP

BookNLP is a natural language processing pipeline that scales to books and other long texts including:

- Part-of-speech tagging
- Dependency parsing
- Entity recognition
- Character name clustering (e.g., "Tom", "Tom Sawyer", "Mr. Sawyer", "Thomas Sawyer") and coreference resolution
- Quotation speaker identification
- Supersense tagging (e.g., "animal", "artifact", "body", "cognition", etc.)
- Event tagging

Figure 3: Narrative Role Benchmark: Mean cosine similarities between same-group characters and other characters, extended representations.

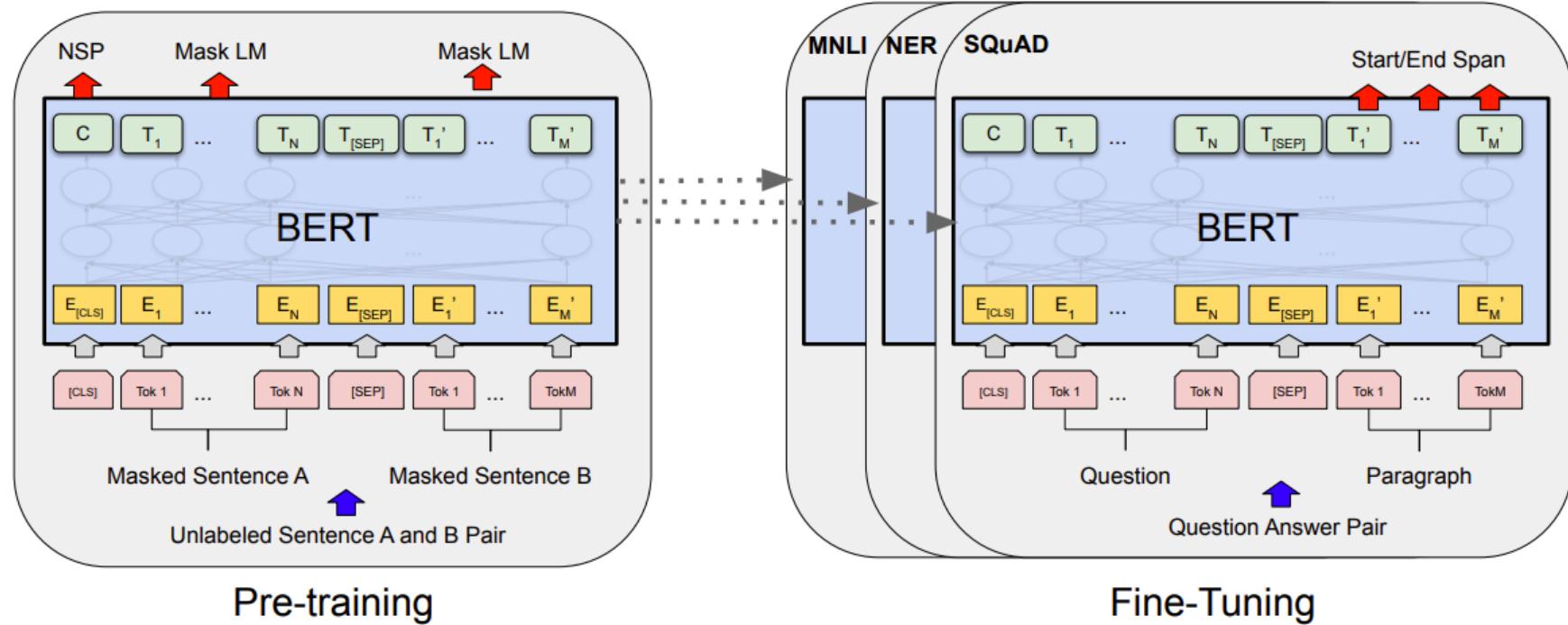
Fine-tuning

Fine-tuning = Further training

Fine-tuning:
train some more on
in-domain data or
separate labeled
task

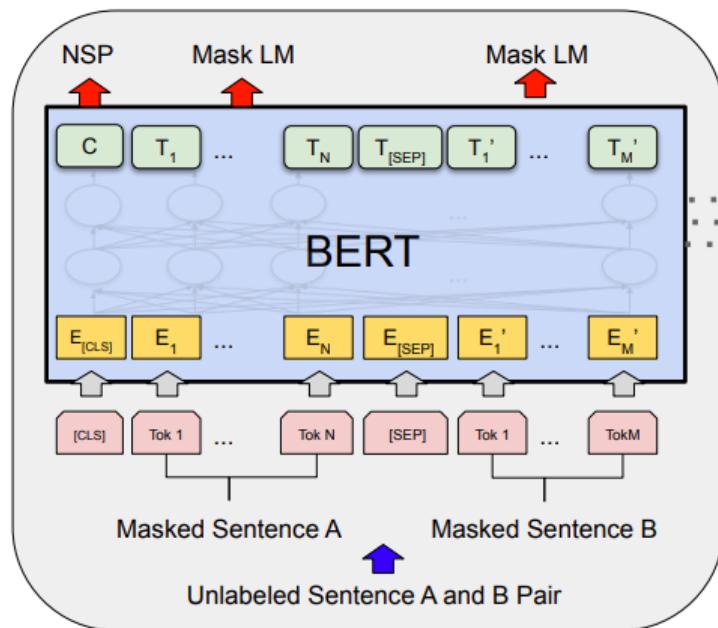
Simple
Fine-tuning

Pre-Training vs. Fine-Tuning

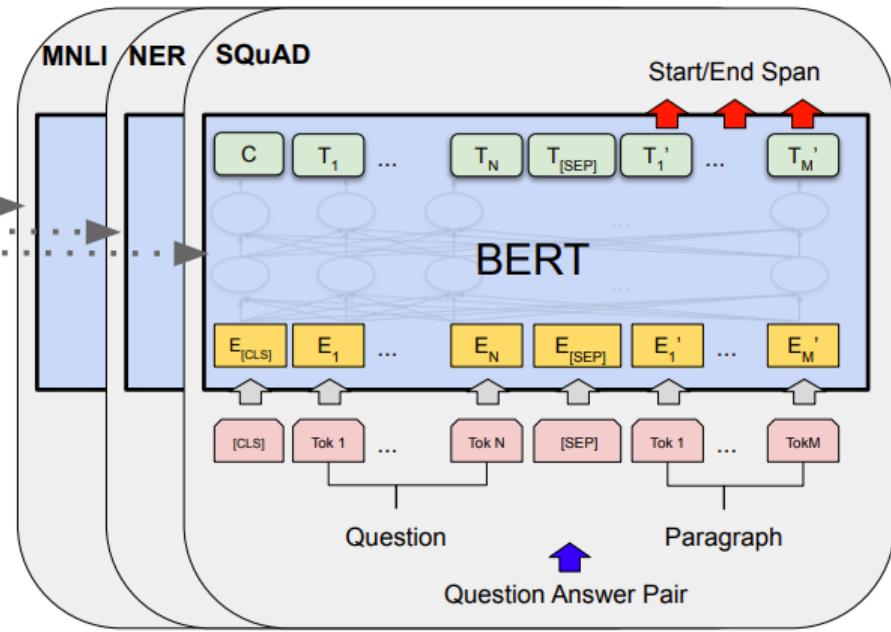


Devlin et al. 2019

Same internal architecture



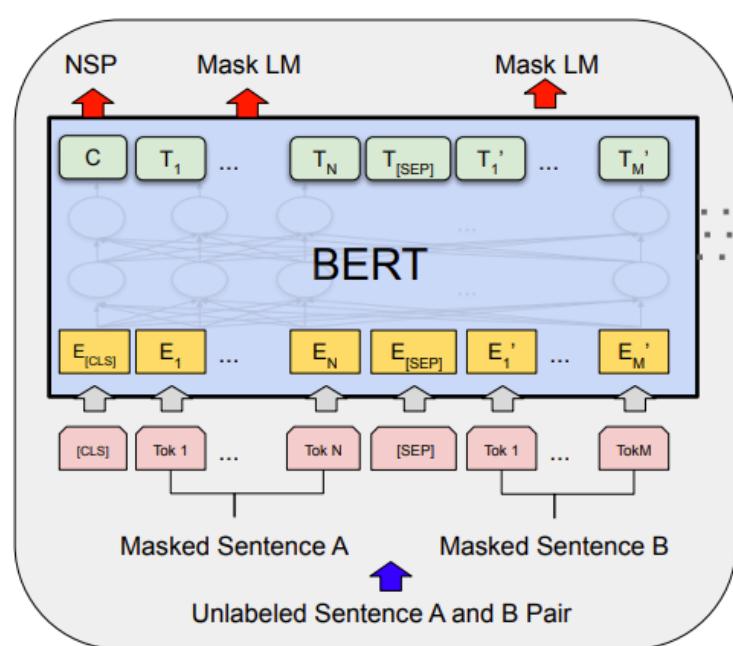
Pre-training



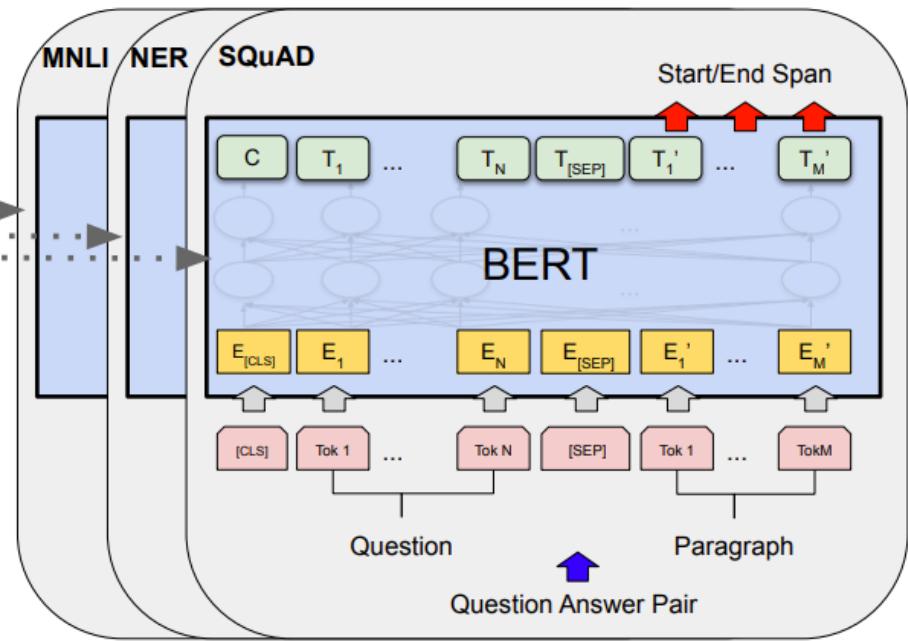
Fine-Tuning

Devlin et al. 2019

Different output layers & loss functions



Pre-training

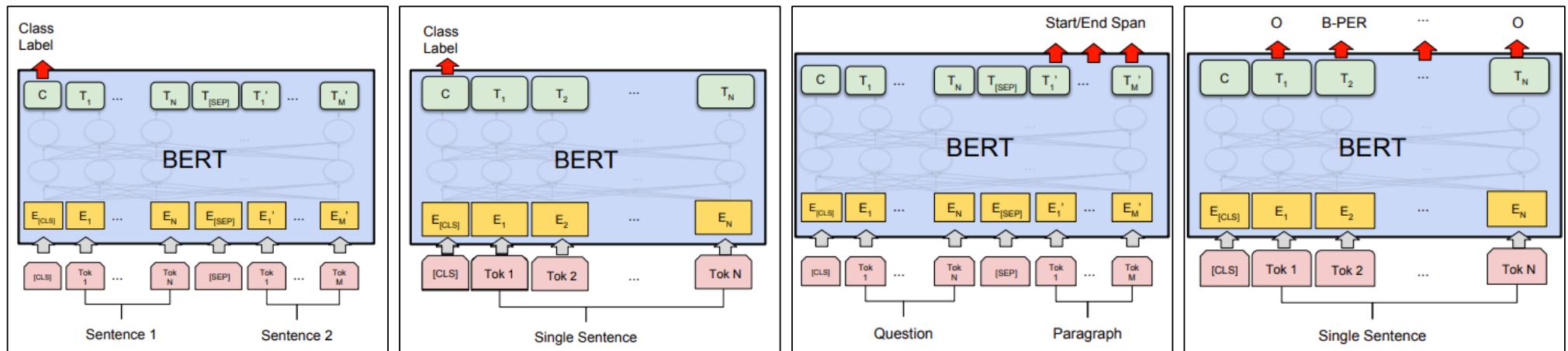


Fine-Tuning

Devlin et al. 2019

Fine-Tuning

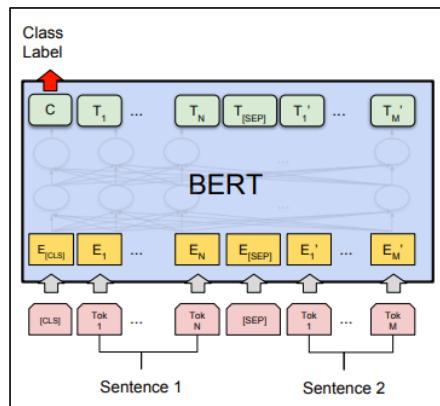
Use pre-trained **model parameters** for initialization
Change pre-training **output layers** of BERT to suit task



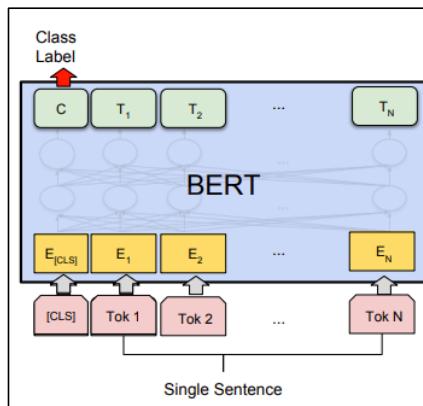
Devlin et al. 2019

Fine-Tuning

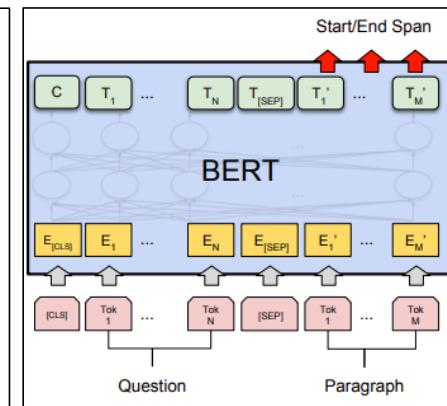
Sentence Pair
Classification



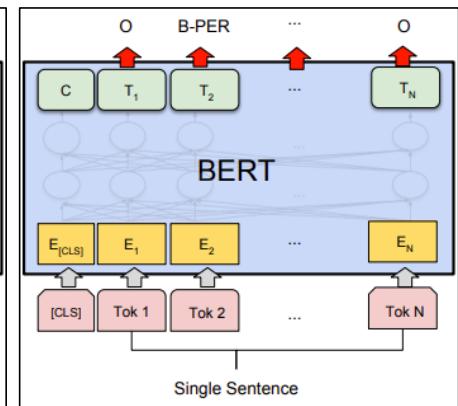
Single Sentence
Classification



Question
Answering



Single Sentence
Tagging



Devlin et al. 2019

Fancy Fine-tuning

Simple Fine-tuning Limitations

- ♦ Lack of computational resources: what if the model is **too big** for you to train?

Simple Fine-tuning Limitations

- ◆ Lack of computational resources: what if the model is **too big** for you to train?

You could fine-tune BERT for your final project, but you could not fine-tune Llama 8B...

Simple Fine-tuning Limitations

- ◆ Lack of computational resources: what if the model is **too big** for you to train?
- ◆ Lack of data: what if you can't find **labeled data** for your specific task?

Fine-tuning = Further training

Fine-tuning:
train some more on
in-domain data or
separate labeled
task

Simple
Fine-tuning

Just train on
on more data

Proxy
Tuning

If model is too big,
finetune a small
model & use it
+ steer the large
model.

Reinforcement
Learning

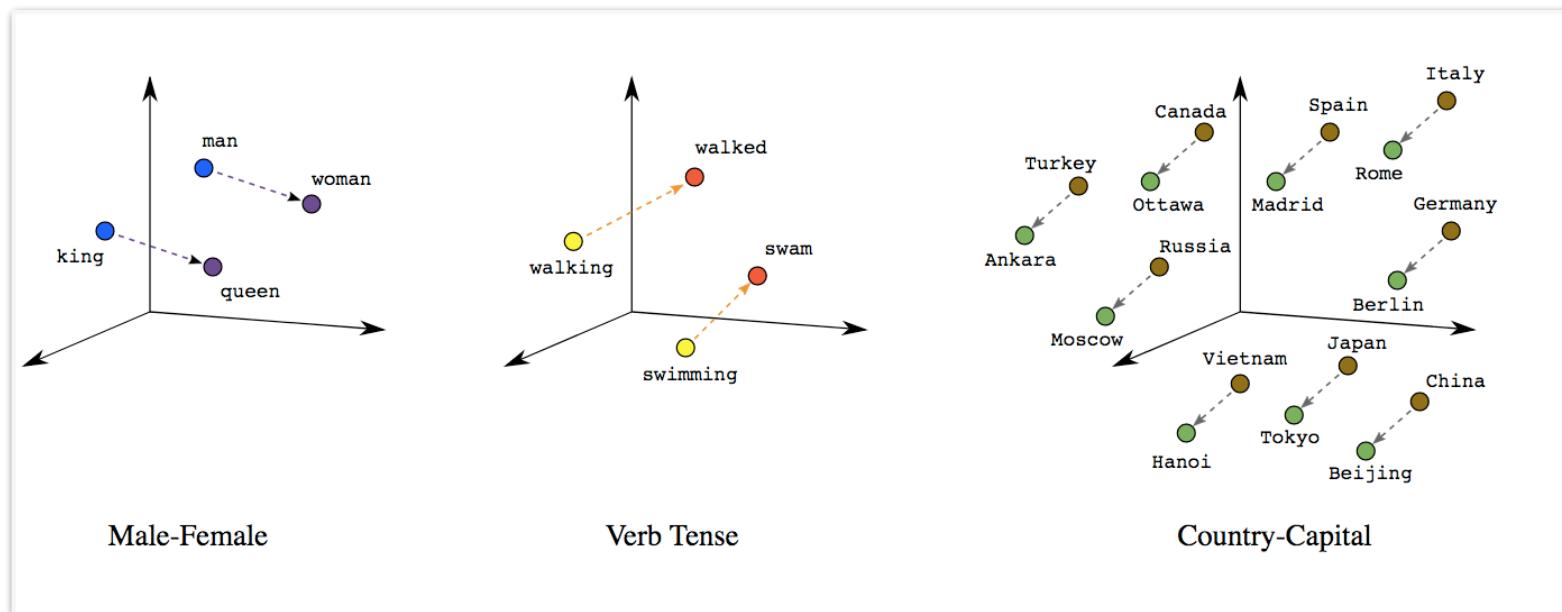
Tune a model
w/ a reward function

Proxy Tuning

Quick Refresher: Embedding Analogies

Back when we learned Word2Vec, we briefly talked about **embedding analogies**.

The idea is that there are reliable geometric relationships between embeddings that correspond to certain word relationships.



Proxy Tuning

Proxy tuning is a new technique useful when you have enough resources to fine-tune a small model, but not enough to fine-tune a larger model that you're interested in using.

Intuition:

Fine-tune the smaller model and use the **difference** in its pre/post fine-tuning predictions to alter the larger model's predictions.

Important! Models need the same tokenizer!

Proxy Tuning Paper

Published as a conference paper at COLM 2024

Tuning Language Models by Proxy

Alisa Liu[♡] Xiaochuang Han[♡] Yizhong Wang^{♡♣} Yulia Tsvetkov[♡]
Yejin Choi^{♡♣} Noah A. Smith^{♡♣}

[♡]University of Washington [♣]Allen Institute for AI
alisaliu@cs.washington.edu

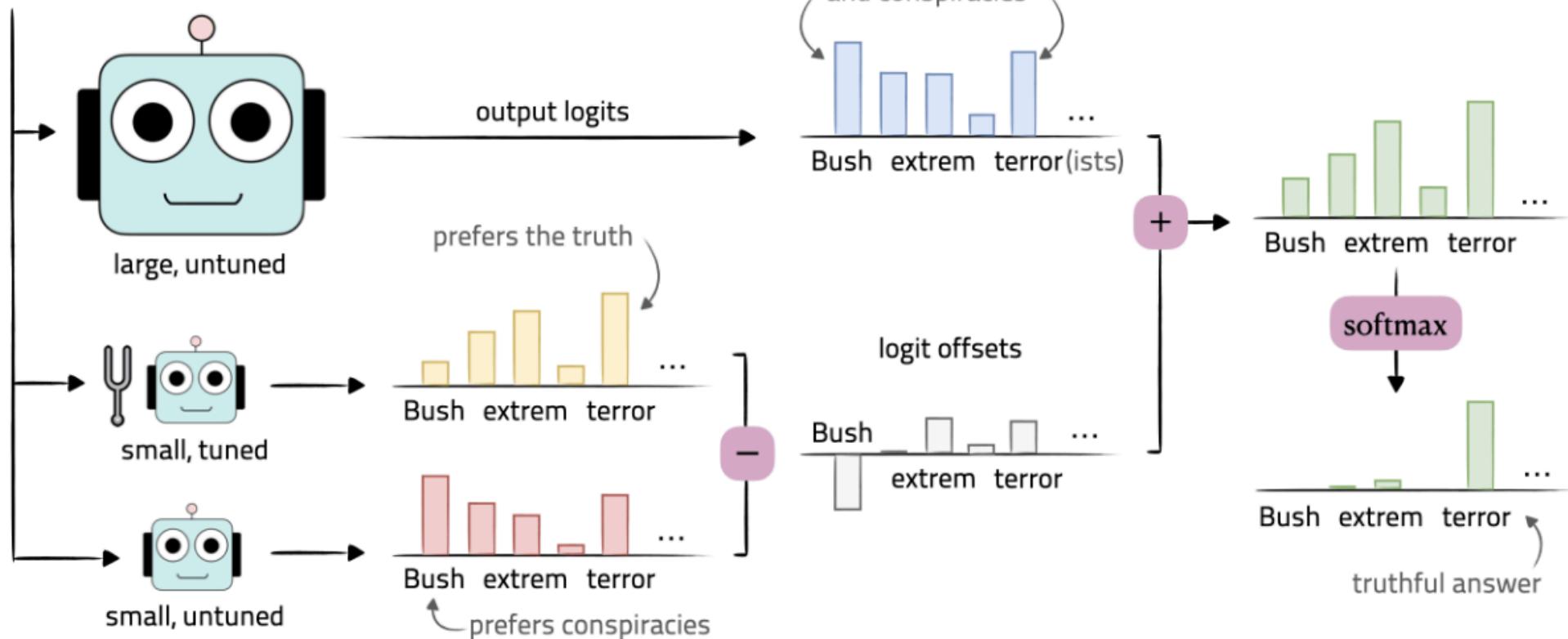
Abstract

Despite the general capabilities of large pretrained language models, they consistently benefit from further adaptation to better achieve desired behaviors. However, tuning these models has become increasingly resource-intensive, or impossible when model weights are private. We introduce **proxy-tuning**, a lightweight decoding-time algorithm that operates on top of black-box LMs to achieve the same end as direct tuning, but by accessing

Intuition: Steering a Larger Model

Who really caused 9/11?

Answer: 9/11 was really the doing of



What We Need

- ◆ A small model that we can finetune
- ◆ A dataset to finetune on
- ◆ A large pretrained model that *gives us access to its logits*

Models

- Expert (M^+) : finetuned small model
- Anti-expert (M^-) : base small model
- Model (M) : base large model

How to Steer

At each timestep (each prediction site):

- ◆ Retrieve the logits from the expert: S_{M^+}
- ◆ Retrieve the logits from the antiexpert: S_{M^-}
- ◆ Take the difference between the two: $S_{M^+} - S_{M^-}$
- ◆ Retrieve the logits from the model: S_M
- ◆ Apply the difference to the model logits:
$$S'_M = S_M + (S_{M^+} - S_{M^-})$$
- ◆ Softmax to obtain the steered prediction

Intuition: Steering a Larger Model

Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for \$2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?

Answer: \$1

6 8 4 0 ...

Expert: [1 5 0.5 -1 ...]

› [-2 2 -5 0]

Anti-expert: [3 3 5.5 -1 ...]

Large: [3 2 0.1 0.5 ...]

Answer: \$18

Proxy-Tuned: [-1 4 -4.9 0.5 ...]

Instruction Proxy-Tuning Results

Model	AlpacaFarm (↑)	GSM (↑)	ToxiGen (↓)	TruthfulQA (↑)	
	Win rate	Acc.	% Toxic	MC Acc.	% Info + True
<i>7B</i>					
Directly tuned	82.5	23.0	0.0	55.9	81.3
<i>13B</i>					
Base (untuned)	2.1	6.6	70.4	38.6	49.1
Proxy-tuned	83.4	26.4	0.1	57.4	82.0
Directly tuned	87.3	32.4	0.0	61.6	80.4
<i>70B</i>					
Base (untuned)	3.7	9.6	67.4	42.3	53.9
Proxy-tuned	88.0	32.0	0.0	59.2	85.1
Directly tuned	90.4	51.8	0.0	68.3	79.6

Table 2: **Results for instruction-tuning.** For each model size, **Base** refers to the pretrained LLAMA2 model, **Directly tuned** refers to LLAMA2-CHAT, and the **Proxy-tuned** model always uses LLAMA2-7B-CHAT as the expert and LLAMA2-7B as the anti-expert. Overall, proxy-tuning dramatically improves performance over the base model, on average closing 91.1% and 88.1% of the gap with the corresponding CHAT model at 13B and 70B size, respectively. It also outperforms the small expert alone in all scenarios except a 0.1% difference in ToxiGen.

Task Proxy-tuning Results

Model	CodexEval	DS-1000
<i>7B</i>		
Directly tuned	68.9	53.6
<i>13B</i>		
Base (untuned)	33.7	26.2
Proxy-tuned	65.7	42.8
Directly tuned	78.6	56.9
<i>70B</i>		
Base (untuned)	62.0	43.9
Proxy-tuned	70.7	50.6
Directly-tuned	89.2	67.6

Table 4: **Results for code adaptation.** **Directly tuned** refers to CODELLAMA-PYTHON. The **proxy-tuned** model uses CODELLAMA-7B-PYTHON as the expert, and LLAMA2-7B as the anti-expert. The metric is pass@10 (\uparrow).

Model	TriviaQA	GSM
<i>7B</i>		
Directly tuned	55.8	40.6
<i>13B</i>		
Base (untuned)	36.8	6.6
Proxy-tuned	55.9	43.9
Directly tuned	59.5	51.0
<i>70B</i>		
Base (untuned)	45.2	9.6
Proxy-tuned	62.7	53.9
Directly tuned	63.1	67.9

Table 5: **Results for task-specific tuning.** **Directly tuned** refers to a task expert obtained by finetuning LLAMA2 on either TriviaQA or GSM. The **proxy-tuned** model uses the 7B task model as the expert and LLAMA2-7B as the anti-expert.

HW 8

In HW 8, we will replicate the GSM results from the proxy-tuning paper, but with smaller models. We will use Llama 3.2 1B as our expert/antiexpert, and Llama 3.1 8B as our larger model.

Three parts:

1. Evaluation: how well do the base models perform on GSM?
2. Finetuning: fine-tune an (even smaller) model on GSM
3. Proxy-tuning: steer Llama 3.1 8B with a finetuned Llama 3.2 1B model.

HW 8

Three parts:

1. Evaluation: how well do the base models perform on GSM? *Can be done in Colab without GPU access.*
2. Finetuning: fine-tune an (even smaller) model on GSM. *Requires GPU access. Do this on the NSF Delta platform.*
3. Proxy-tuning: steer Llama 3.1 8B with a finetuned Llama 3.2 1B model. *Can be done in Colab without GPU access.*

Fine-tuning = Further training

Fine-tuning:
train some more on
in-domain data or
separate labeled
task

Simple
Fine-tuning

*Just train on more
(labeled) data*

Proxy
Tuning

*Fine-tune a smaller
model and use it
steer a larger model*

Next class!

Reinforcement
Learning

*Tune the model with
a reward function*

