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The	Deep	Learning	
Pipeline



Pretraining: 
learn good 
representations via 
an unlabeled task.

Finetuning: 
train some more on 
in-domain data or 
separate labeled 
task

Prompt 
engineering: 
craft prompts that 
disguise task of 
interest as a language 
generation problem.

Representation 
learning: 
extract attention 
features and use as 
input features to 
another model

Q/A

Google	Search

Code	generation

Coreference	resolution
Translation

ClassiEication

Summarization

Style	Transfer

Image	Captioning

Poem	generation

Story	generation



Fine-tuning	=	Further	training

Fine-tuning: 
train some more on 
in-domain data or 
separate labeled 
task

Just train on more 
(labeled) data

Simple 
Fine-tuning

Proxy 
Tuning

Reinforcement 
Learning

Fine-tune a smaller 
model and use it 
steer a larger model

Tune the model with 
a reward function



Alignment	through	
Reinforcement	Learning



Aligning	Models	with	Human	Preferences
Users tend to have preferences about generated text that 
go beyond its statistical frequency. 

Companies also have preferences for how their models 
respond.

How can we align 
model behavior 
with these 
preferences?  



Reinforcement	Learning	from	Human	Feedback

Step 1: Obtain data on human preferences

Option 1: hire annotators to 
rank model outputs

Option 2: find natural 
datasets of preference data



Step	1:	Obtain	data	on	human	preferences

Option 1: hire annotators to 
rank model outputs

https://huggingface.co/blog/rlhf



Potential	Impact	on	Annotators
The 51 moderators in Nairobi working on 
Sama’s OpenAI account were tasked with 
reviewing texts, and some images, many 
depicting graphic scenes of violence, self-
harm, murder, rape, necrophilia, child 
abuse, bestiality and incest, the petitioners 
say.

The moderators say they weren’t 
adequately warned about the brutality of 
some of the text and images they would be 
tasked with reviewing, and were offered 
no or inadequate psychological support. 
Workers were paid between $1.46 and 
$3.74 an hour, according to a Sama 
spokesperson.



Step	2:	Model	Preferences	

Given two outputs oi and oj with associated scores zi and zj: 

Bradley-Terry Model:

pro aj x 6 ai z

logistic sigmoid of the difference in

the scores



Step	3:	Learn	a	Reward	Function	
Goal: Learn a model that predicts the rewards of different 
inputs.

In principle, the reward model could be any kind of 
classification model. In practice, we often fine-tune a 
pretrained LLM.

sirloin rloj x

where r is the reward assigned to

each input output pair



Step	3:	Learn	a	Reward	Function	

https://huggingface.co/blog/rlhf



Step	4:	Use	Reward	Function	to	Fine-Tune	

Next, we will incorporate the 
reward function into the training 
objective and fine-tune our model 
with this modified objective. 

https://huggingface.co/blog/rlhf



• There are various RL methods 


• Maybe the most common nowadays are policy gradient methods


• Maximize some performance measure via gradient ascent


• The most common performance measure is the value of the start state:





• So during learning we want to find  such that





• One of the simplest algorithms to do this is REINFORCE [Williams 
1992]

J(θ) = vπθ
(s0)

θ

θ = arg max
θ

J(θ) = arg max
θ

vπθ
(s0)

Policy	Gradient	Learning
Reinforcement	Learning



• PPO [Schulman et al. 2017] is a contemporary RL algorithm


• The most common choice for LLMs


• Empirically provides several advantages over REINFORCE


- Increased stability and reliability, reduction in gradient estimates 
variance, and faster learning


- But, has more hyper-parameters and requires to estimate the 
value function 


- Recent work shows REINFORCE remains competitive 
[Ahmadian et al. 2024], when used well

vπ(s)

Proximal	Policy	Optimization	(PPO)
Reinforcement	Learning

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.14740


Solution: Incorporate the Kullback-Leibler divergence 
between the pretrained model and the reward-tuned 
model into the reward function (i.e. reward models that 
stay fairly similar to the original model).

Problem: LLM can drift too far and forget what it 
learned in pretraining.

KL divergence: measures the distance between two 
probability distributions.

Step	4:	Use	Reward	Function	to	Fine-Tune	



• PPO balances between


- Significant changes to the policy (i.e., to increase expected 
reward) 


- Keeping the policy as close as possible to the original policy to 
maintain stability 


• It is based on optimizing a penalized objective


arg max
θ

Eπ[ πθ(at |st)
πθold(at |st)

̂A(s, a) − βKL[πθold
( ⋅ |st), πθ( ⋅ |st)]]

Reward	Maximization	Under	Penalty
PPO

20

trying to keep finaturedmaximize
rewards modelrelatively faithful

to base model



Reinforcement	Learning	from	Human	Feedback	Process

[Figure from Eric Mitchell]

Step 0: 
Unsupervised pre-training 

(tons of data; >1T tokens)

Step 1: 
Supervised fine-tuning 

on human demos

Step 2: 
Fit a reward model 

to human preferences 
over  samplesπSFT

Step 3: 
Optimize a policy to 

maximize learned rewards

πθ0
πθSFT

πθRL
rϕ

“Write a poem about jazz.” 
…

X

Y
(prompts)

(human 
demos)

Fine-tune

Fine-tune
Fine-tune

(xi, yi
w, yi

l)
(preference pairs)

Human!

X′ 

OptimizeSample!











• A pretty complex process with many tricky implementation details


• Hard to get it to work — both reward modeling and RL


• Very costly — both compute and data annotation


• But, works really well


• There are alternatives that involve building preference signals into 
fine-tuning directly, rather than training a separate reward model 
(Direct Policy Optimization).


• Basically all SOTA models at this point go through some kind of 
reinforcement learning for preferences (DPO or PPO).

Takeaways
Reinforcement	Learning	from	Human	Feedback

https://iclr-blogposts.github.io/2024/blog/the-n-implementation-details-of-rlhf-with-ppo/


Prompt	Engineering	



Few-Shot	Prompting

Often 
called "in 
context 
learning" 
now.

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.
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Few-Shot	Prompting

[Brown et al. 2020]

Figure 1.3: Aggregate performance for all 42 accuracy-denominated benchmarks While zero-shot performance
improves steadily with model size, few-shot performance increases more rapidly, demonstrating that larger models are
more proficient at in-context learning. See Figure 3.8 for a more detailed analysis on SuperGLUE, a standard NLP
benchmark suite.

In this paper, we test this hypothesis by training a 175 billion parameter autoregressive language model, which we call
GPT-3, and measuring its in-context learning abilities. Specifically, we evaluate GPT-3 on over two dozen NLP datasets,
as well as several novel tasks designed to test rapid adaptation to tasks unlikely to be directly contained in the training
set. For each task, we evaluate GPT-3 under 3 conditions: (a) “few-shot learning”, or in-context learning where we
allow as many demonstrations as will fit into the model’s context window (typically 10 to 100), (b) “one-shot learning”,
where we allow only one demonstration, and (c) “zero-shot” learning, where no demonstrations are allowed and only
an instruction in natural language is given to the model. GPT-3 could also in principle be evaluated in the traditional
fine-tuning setting, but we leave this to future work.

Figure 1.2 illustrates the conditions we study, and shows few-shot learning of a simple task requiring the model to
remove extraneous symbols from a word. Model performance improves with the addition of a natural language task
description, and with the number of examples in the model’s context, K. Few-shot learning also improves dramatically
with model size. Though the results in this case are particularly striking, the general trends with both model size and
number of examples in-context hold for most tasks we study. We emphasize that these “learning” curves involve no
gradient updates or fine-tuning, just increasing numbers of demonstrations given as conditioning.

Broadly, on NLP tasks GPT-3 achieves promising results in the zero-shot and one-shot settings, and in the the few-shot
setting is sometimes competitive with or even occasionally surpasses state-of-the-art (despite state-of-the-art being held
by fine-tuned models). For example, GPT-3 achieves 81.5 F1 on CoQA in the zero-shot setting, 84.0 F1 on CoQA in
the one-shot setting, 85.0 F1 in the few-shot setting. Similarly, GPT-3 achieves 64.3% accuracy on TriviaQA in the
zero-shot setting, 68.0% in the one-shot setting, and 71.2% in the few-shot setting, the last of which is state-of-the-art
relative to fine-tuned models operating in the same closed-book setting.

GPT-3 also displays one-shot and few-shot proficiency at tasks designed to test rapid adaption or on-the-fly reasoning,
which include unscrambling words, performing arithmetic, and using novel words in a sentence after seeing them
defined only once. We also show that in the few-shot setting, GPT-3 can generate synthetic news articles which human
evaluators have difficulty distinguishing from human-generated articles.

At the same time, we also find some tasks on which few-shot performance struggles, even at the scale of GPT-3. This
includes natural language inference tasks like the ANLI dataset, and some reading comprehension datasets like RACE
or QuAC. By presenting a broad characterization of GPT-3’s strengths and weaknesses, including these limitations, we
hope to stimulate study of few-shot learning in language models and draw attention to where progress is most needed.

A heuristic sense of the overall results can be seen in Figure 1.3, which aggregates the various tasks (though it should
not be seen as a rigorous or meaningful benchmark in itself).

5

Few-shot prompting almost always helps performance.

https://arxiv.org/abs/2005.14165


Few-Shot	Prompting

Calibrate Before Use: Improving Few-Shot Performance of Language Models

Figure 2. There is high variance in GPT-3’s accuracy as we change
the prompt’s training examples, as well as the permutation of the
examples. Here, we select ten different sets of four SST-2 training
examples. For each set of examples, we vary their permutation and
plot GPT-3 2.7B’s accuracy for each permutation (and its quartiles).

Figure 3. There is high variance in GPT-3’s accuracy as we change
the prompt format. In this figure, we use ten different prompt
formats for SST-2. For each format, we plot GPT-3 2.7B’s accuracy
for different sets of four training examples, along with the quartiles.

using the 4-way AGNews (Zhang et al., 2015) and 14-way
DBPedia (Zhang et al., 2015) datasets. The prompt in Sec-
tion 1 shows an example of the sentiment analysis task.

Fact Retrieval We evaluate fact retrieval with LAMA

(Petroni et al., 2019). The dataset consists of knowledge
base triples that are placed into templates with missing ob-
jects, e.g. “Obama was born in”. We use these templates
as our prompts, and remove the relations where the missing
answer is not at the end of the template (left-to-right LMs
cannot solve these). The answers are always single tokens,
and we report average accuracy across all triples.

Information Extraction We consider information extrac-
tion using two slot filling datasets, ATIS (Hemphill et al.,
1990) and MIT Movies trivia10k13 (Liu et al., 2012). We
use two random slots for each dataset, airline and departure
date for ATIS, and director name and movie genre for MIT
Movies. The answer for both datasets is a span of text from
the input, e.g., the ATIS airline task is to predict “american
airlines” when given the sentence “list a flight on american
airlines from toronto to san diego”. We use Exact Match
between the model’s generated output and the ground-truth
span as our evaluation metric.

2.2. Model Details

We run our experiments on three sizes of GPT-3 (2.7B, 13B,
and 175B parameters) as well as GPT-2 (1.5B parameters).
We access GPT-3 using the OpenAI API. We release code
to replicate our experiments.1

1https://www.github.com/tonyzhaozh/few-shot-learning

3. Accuracy Varies Highly Across Prompts

This section studies how GPT-3’s accuracy changes as we
vary each aspect of the prompt (training examples, permu-
tation, format). We focus on a subset of the datasets to
simplify our analysis; in Section 5 we show that our find-
ings hold across all of the datasets we study.

GPT-3’s accuracy depends highly on both selection and

permutation of training examples. Concretely, we use a
fixed prompt format and choose different random sets of
training examples. For each set of training examples, we
evaluate the accuracy for all possible permutations.

Figure 2 shows the results for SST-2 (4-shot, GPT-3 2.7B).
Surprisingly, varying the permutation can be as important,
or even more important, than which training examples are
chosen. For example, varying the permutation of the train-
ing examples can cause accuracy to go from near chance
(54.3%) to near state-of-the-art (93.4%). For a qualitative
example of the sensitivity to permutations, see Table 2 in
Appendix A. This high importance on example order is in
contrast to standard machine learning, where the ordering
of examples during training is typically an afterthought.

The variance persists with more data and larger models.

Adding more training examples into the prompt does not
necessarily reduce the variance in accuracy. We sweep over
the number of training examples for three different datasets
in Figure 1 (red curves). The variance remains high even
when we use 16 training examples. Moreover, adding more
training examples can sometimes hurt accuracy (e.g., mean
accuracy drops from 36.0% to 25.9% for DBPedia 0-shot
to 1-shot). The variance in accuracy can also remain high
when using larger models, e.g., the left of Figure 1.

[Zhao et al. 2021]

However, it can be highly sensitive to the choice of examples, 
their ordering, and the format of the prompt.

https://arxiv.org/abs/2102.09690


Few-Shot	Prompting
Also, it seems not to work well for vision-language models.



Chain-of-Thought	Reasoning
One idea is to make the model generate reasoning before 
an answer. This guarantees that the answer is conditioned 
on the reasoning. 
Some people think this could improve the quality of the 
answer. However, other work has shown that the answer 
is not always consistent with the given reasoning.



Chain-of-Thought Prompting Elicits Reasoning
in Large Language Models

Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosma

Brian Ichter Fei Xia Ed H. Chi Quoc V. Le Denny Zhou

Google Research, Brain Team
{jasonwei,dennyzhou}@google.com

Abstract

We explore how generating a chain of thought—a series of intermediate reasoning
steps—significantly improves the ability of large language models to perform
complex reasoning. In particular, we show how such reasoning abilities emerge
naturally in sufficiently large language models via a simple method called chain-of-
thought prompting, where a few chain of thought demonstrations are provided as
exemplars in prompting.
Experiments on three large language models show that chain-of-thought prompting
improves performance on a range of arithmetic, commonsense, and symbolic
reasoning tasks. The empirical gains can be striking. For instance, prompting a
PaLM 540B with just eight chain-of-thought exemplars achieves state-of-the-art
accuracy on the GSM8K benchmark of math word problems, surpassing even
finetuned GPT-3 with a verifier.

A: The cafeteria had 23 apples originally. They used 
20 to make lunch. So they had 23 - 20 = 3. They 
bought 6 more apples, so they have 3 + 6 = 9. The 
answer is 9.

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of 
tennis balls. Each can has 3 tennis balls. How many 
tennis balls does he have now? 

A: The answer is 11. 

Q: The cafeteria had 23 apples. If they used 20 to 
make lunch and bought 6 more, how many apples 
do they have?

A: The answer is 27.

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of 
tennis balls. Each can has 3 tennis balls. How many 
tennis balls does he have now? 

A: Roger started with 5 balls. 2 cans of 3 tennis balls 
each is 6 tennis balls. 5 + 6 = 11. The answer is 11. 

Q: The cafeteria had 23 apples. If they used 20 to 
make lunch and bought 6 more, how many apples 
do they have?

Model Input

Model Output Model Output

Model Input

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
1.

11
90

3v
6 

 [c
s.C

L]
  1

0 
Ja

n 
20

23

[Wei et al. 2022]

https://arxiv.org/abs/2201.11903


(c) Zero-shot
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, 
and half of the golf balls are blue. How many blue golf balls are 
there?
A: The answer (arabic numerals) is 

(Output) 8 X

(d) Zero-shot-CoT (Ours)
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, 
and half of the golf balls are blue. How many blue golf balls are 
there?
A: Let’s think step by step. 

(Output) There are 16 balls in total. Half of the balls are golf 
balls. That means that there are 8 golf balls. Half of the golf balls 
are blue. That means that there are 4 blue golf balls. ✓

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls does 
he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, 
and half of the golf balls are blue. How many blue golf balls are 
there?
A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf 
balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are 
blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4. ✓

(b) Few-shot-CoT(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls does 
he have now?
A: The answer is 11. 

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, 
and half of the golf balls are blue. How many blue golf balls are 
there?
A:

(Output) The answer is 8. X

Figure 1: Example inputs and outputs of GPT-3 with (a) standard Few-shot ([Brown et al., 2020]), (b)
Few-shot-CoT ([Wei et al., 2022]), (c) standard Zero-shot, and (d) ours (Zero-shot-CoT). Similar to
Few-shot-CoT, Zero-shot-CoT facilitates multi-step reasoning (blue text) and reach correct answer
where standard prompting fails. Unlike Few-shot-CoT using step-by-step reasoning examples per
task, ours does not need any examples and just uses the same prompt “Let’s think step by step” across
all tasks (arithmetic, symbolic, commonsense, and other logical reasoning tasks).

In contrast to the excellent performance of LLMs in intuitive and single-step system-1 [Stanovich
and West, 2000] tasks with task-specific few-shot or zero-shot prompting [Liu et al., 2021b], even
language models at the scale of 100B or more parameters had struggled on system-2 tasks requiring
slow and multi-step reasoning [Rae et al., 2021]. To address this shortcoming, Wei et al. [2022],
Wang et al. [2022] have proposed chain of thought prompting (CoT), which feed LLMs with the
step-by-step reasoning examples rather than standard question and answer examples (see Fig. 1-a).
Such chain of thought demonstrations facilitate models to generate a reasoning path that decomposes
the complex reasoning into multiple easier steps. Notably with CoT, the reasoning performance then
satisfies the scaling laws better and jumps up with the size of the language models. For example,
when combined with the 540B parameter PaLM model [Chowdhery et al., 2022], chain of thought
prompting significantly increases the performance over standard few-shot prompting across several
benchmark reasoning tasks, e.g., GSM8K (17.9% ! 58.1%).

While the successes of CoT prompting [Wei et al., 2022], along those of many other task-specific
prompting work [Gao et al., 2021, Schick and Schütze, 2021, Liu et al., 2021b], are often attributed
to LLMs’ ability for few-shot learning [Brown et al., 2020], we show that LLMs are decent zero-shot
reasoners by adding a simple prompt, Let’s think step by step, to facilitate step-by-step thinking before
answering each question (see Figure 1). Despite the simplicity, our Zero-shot-CoT successfully
generates a plausible reasoning path in a zero-shot manner and reaches the correct answer in a
problem where the standard zero-shot approach fails. Importantly, our Zero-shot-CoT is versatile and
task-agnostic, unlike most prior task-specific prompt engineering in the forms of examples (few-shot)
or templates (zero-shot) [Liu et al., 2021b]: it can facilitate step-by-step answers across various
reasoning tasks, including arithmetic (MultiArith [Roy and Roth, 2015], GSM8K [Cobbe et al., 2021],
AQUA-RAT [Ling et al., 2017], and SVAMP [Patel et al., 2021]), symbolic reasoning (Last letter and
Coin flip), commonsense reasoning (CommonSenseQA [Talmor et al., 2019] and Strategy QA [Geva
et al., 2021]), and other logical reasoning tasks (Date understanding and Tracking Shuffled Objects
from BIG-bench [Srivastava et al., 2022]) without modifying the prompt per task.

We empirically evaluate Zero-shot-CoT against other prompting baselines in Table 2. While our
Zero-shot-CoT underperforms Few-shot-CoT with carefully-crafted and task-specific step-by-step ex-
amples, Zero-shot-CoT achieves enormous score gains compared to the zero-shot baseline, e.g. from
17.7% to 78.7% on MultiArith and from 10.4% to 40.7% on GSM8K with large-scale InstructGPT

2

[Kojima et al. 2022]

https://arxiv.org/abs/2205.11916


Chain-of-Thought	Prompting
❖ CoT requires examples explicitly enumerating the 

reasoning steps

❖ Turn out reasoning steps can often be elicited from 
models; just “tell” the model to reason in steps



Chain-of-Thought	Prompting
❖ Main idea: just “tell” the model to reason in steps

❖ Challenge: the answer is often entangled in the 
reasoning text, so how do we extract it?

Q: On average Joe throws 25 punches per 
minute.  A fight lasts 5 rounds of 3 minutes.  How 
many punches did he throw?
A: Let's think step by step. 

In one minute, Joe throws 25 punches. 
In three minutes, Joe throws 3 * 25 = 75 punches. 
In five rounds, Joe throws 5 * 75 = 375 punches. 

Q: On average Joe throws 25 punches per 
minute.  A fight lasts 5 rounds of 3 ・・・
A: Let's think step by step.

In one minute, Joe throws 25 punches. ・・・In five 
rounds, Joe throws 5 * 75 = 375 punches. . 
Therefore, the answer (arabic numerals) is

375.

LLM

LLM

【1st prompt】
Reasoning Extraction

【2nd prompt】
Answer Extraction

Figure 2: Full pipeline of Zero-shot-CoT as described in § 3: we first use the first “reasoning” prompt
to extract a full reasoning path from a language model, and then use the second “answer” prompt to
extract the answer in the correct format from the reasoning text.

in Figure 1). In summary, Few-shot-CoT [Wei et al., 2022] requires careful human engineering of
a few prompt examples with specific answer formats per task, while Zero-shot-CoT requires less
engineering but requires prompting LLMs twice.

1st prompt: reasoning extraction In this step we first modify the input question x into a prompt
x0 using a simple template “Q: [X]. A: [T]”, where [X] is an input slot for x and [T] is an slot
for hand-crafted trigger sentence t that would extract chain of though to answer the question x. For
example, if we use “Let’s think step by step” as a trigger sentence, the prompt x0 would be “Q: [X].
A: Let’s think step by step.”. See Table 4 for more trigger examples. Prompted text x0 is then fed into
a language model and generate subsequent sentence z. We can use any decoding strategy, but we
used greedy decoding throughout the paper for the simplicity.

2nd prompt: answer extraction In the second step, we use generated sentence z along with
prompted sentence x0 to extract the final answer from the language model. To be concrete, we simply
concatenate three elements as with “[X0] [Z] [A]”: [X0] for 1st prompt x0, [Z] for sentence z
generated at the first step, and [A] for a trigger sentence to extract answer. The prompt for this step
is self-augmented, since the prompt contains the sentence z generated by the same language model.
In experiment, we use slightly different answer trigger depending on the answer format. For example,
we use “Therefore, among A through E, the answer is” for multi-choice QA, and “Therefore, the
answer (arabic numerals) is” for math problem requiring numerical answer. See Appendix A.5 for
the lists of answer trigger sentences. Finally, the language model is fed the prompted text as input to
generate sentences ŷ and parse the final answer. See “Answer Cleansing” at §4 for the parser details.

4 Experiment

Tasks and datasets We evaluate our proposal on 12 datasets from four categories of reasoning
tasks: arithmetic, commonsense, symbolic, and other logical reasoning tasks. See Appendix A.2 for
the detailed description of each datasets.

For arithmetic reasoning, we consider the following six datasets: (1) SingleEq [Koncel-Kedziorski
et al., 2015], (2) AddSub [Hosseini et al., 2014], (3) MultiArith [Roy and Roth, 2015], (4) AQUA-
RAT [Ling et al., 2017], (5) GSM8K [Cobbe et al., 2021], and (6) SVAMP [Patel et al., 2021]. The
first three are from the classic Math World Problem Repository [Koncel-Kedziorski et al., 2016],
and the last three are from more recent benchmarks. SingleEq and AddSub contain easier problems,
which do not require multi-step calculation to solve the tasks. MultiArith, AQUA-RAT, GSM8k, and
SVAMP are more challenging datasets that require multi-step reasoning to solve.

For commonsense reasoning, we use CommonsenseQA [Talmor et al., 2019] and StrategyQA [Geva
et al., 2021]. CommonsenseQA asks questions with complex semantics that often require reasoning

4



Chain-of-Thought	Prompting
❖ Main idea: just “tell” the model to reason in steps

❖ Challenge: the answer is often entangled in the 
reasoning text, so how do we extract it?

 Just use an LLM! 

Q: On average Joe throws 25 punches per 
minute.  A fight lasts 5 rounds of 3 minutes.  How 
many punches did he throw?
A: Let's think step by step. 

In one minute, Joe throws 25 punches. 
In three minutes, Joe throws 3 * 25 = 75 punches. 
In five rounds, Joe throws 5 * 75 = 375 punches. 

Q: On average Joe throws 25 punches per 
minute.  A fight lasts 5 rounds of 3 ・・・
A: Let's think step by step.

In one minute, Joe throws 25 punches. ・・・In five 
rounds, Joe throws 5 * 75 = 375 punches. . 
Therefore, the answer (arabic numerals) is

375.

LLM

LLM

【1st prompt】
Reasoning Extraction

【2nd prompt】
Answer Extraction

Figure 2: Full pipeline of Zero-shot-CoT as described in § 3: we first use the first “reasoning” prompt
to extract a full reasoning path from a language model, and then use the second “answer” prompt to
extract the answer in the correct format from the reasoning text.

in Figure 1). In summary, Few-shot-CoT [Wei et al., 2022] requires careful human engineering of
a few prompt examples with specific answer formats per task, while Zero-shot-CoT requires less
engineering but requires prompting LLMs twice.

1st prompt: reasoning extraction In this step we first modify the input question x into a prompt
x0 using a simple template “Q: [X]. A: [T]”, where [X] is an input slot for x and [T] is an slot
for hand-crafted trigger sentence t that would extract chain of though to answer the question x. For
example, if we use “Let’s think step by step” as a trigger sentence, the prompt x0 would be “Q: [X].
A: Let’s think step by step.”. See Table 4 for more trigger examples. Prompted text x0 is then fed into
a language model and generate subsequent sentence z. We can use any decoding strategy, but we
used greedy decoding throughout the paper for the simplicity.

2nd prompt: answer extraction In the second step, we use generated sentence z along with
prompted sentence x0 to extract the final answer from the language model. To be concrete, we simply
concatenate three elements as with “[X0] [Z] [A]”: [X0] for 1st prompt x0, [Z] for sentence z
generated at the first step, and [A] for a trigger sentence to extract answer. The prompt for this step
is self-augmented, since the prompt contains the sentence z generated by the same language model.
In experiment, we use slightly different answer trigger depending on the answer format. For example,
we use “Therefore, among A through E, the answer is” for multi-choice QA, and “Therefore, the
answer (arabic numerals) is” for math problem requiring numerical answer. See Appendix A.5 for
the lists of answer trigger sentences. Finally, the language model is fed the prompted text as input to
generate sentences ŷ and parse the final answer. See “Answer Cleansing” at §4 for the parser details.

4 Experiment

Tasks and datasets We evaluate our proposal on 12 datasets from four categories of reasoning
tasks: arithmetic, commonsense, symbolic, and other logical reasoning tasks. See Appendix A.2 for
the detailed description of each datasets.

For arithmetic reasoning, we consider the following six datasets: (1) SingleEq [Koncel-Kedziorski
et al., 2015], (2) AddSub [Hosseini et al., 2014], (3) MultiArith [Roy and Roth, 2015], (4) AQUA-
RAT [Ling et al., 2017], (5) GSM8K [Cobbe et al., 2021], and (6) SVAMP [Patel et al., 2021]. The
first three are from the classic Math World Problem Repository [Koncel-Kedziorski et al., 2016],
and the last three are from more recent benchmarks. SingleEq and AddSub contain easier problems,
which do not require multi-step calculation to solve the tasks. MultiArith, AQUA-RAT, GSM8k, and
SVAMP are more challenging datasets that require multi-step reasoning to solve.

For commonsense reasoning, we use CommonsenseQA [Talmor et al., 2019] and StrategyQA [Geva
et al., 2021]. CommonsenseQA asks questions with complex semantics that often require reasoning
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Maybe not?



What	Are	Prompts	Really	Doing?

Results from Webson & Pavlick (2022)



Continuous	Prompting
Humans write discrete prompts, which are then turned 
into text embeddings.
What if we tried to directly learn good text embeddings?




