CS 333:

Natural Language Fall 2025
Processing

Prof. Carolyn Anderson
Wellesley College

Reminders

Quiz 2 on Tuesday: J&M Chapter 3
HW 2 will be released today
My help hours: Monday 4-5:30

Working with Text
Collections

Working With Text Collections

4

A corpus is a collection of texts. The NLTK Python
library comes with many corpora:

Corpus Contents

Brown Corpus 15 genres, 1.15M words, tagged, categorized

CMU Pronouncing Dictionary 127k entries

Gutenberg (selections) 18 texts, 2M words

Inaugural Address Corpus US Presidential Inaugural Addresses (1789-present)
Indian POS-Tagged Corpus 60k words, tagged (Bangla, Hindi, Marathi, Telugu)
Movie Reviews 2k movie reviews with sentiment classification
Reuters Corpus 1.3M words, 10k news documents, categorized
Roget's Thesaurus 200k words, formatted text

Shakespeare texts (selections) 8 books in XML format

State of the Union Corpus 485k words, formatted text

Switchboard Corpus (selections) 36 phonecalls, transcribed, parsed
Univ Decl of Human Rights 480k words, 300+ languages

Working With Text Collections

NLTK provides easy methods for accessing a
corpus in different formats:

>>> from nltk.corpus import brown
>>> brown.categories()

['adventure', 'belles lettres', 'editorial', 'fiction',
'government', 'hobbies', 'humor', 'learned', 'lore', 'mystery',
'news', 'religion', 'reviews', ‘'romance', 'science fiction']

>>> prown.words(categories="'news')
['The', "Fulton', 'County', 'Grand',6 'Jury',6 'said', ..]

>>> brown.words(fileids=["'cg22'])
['Does', 'our', 'society', 'have',

a', 'runaway', ',', ..l

>>> brown.sents(categories=['news', 'editorial', 'reviews'])
[['The', '"Fulton', 'County'...], ['The', 'jury',
'further' ...1, ...]

Corpora

Corpora vary along many dimensions:

Language: 7000+ languages in the world

Variety, like African American Language varieties.
AAE Twitter posts might include forms like "iont" (I don't)
Code switching, e.g., Spanish /English, Hindi/English:

S/E: Por primera vez veo a @username actually being hateful! It was beautiful:)

[For the first time I get to see @username actually being hateful! it was beautiful:) |
Genre: newswire, fiction, scientific articles, Wikipedia

Author Demographics: writer's age, gender, ethnicity,
SES

Corpus Datasheets

Motivation:

- Why was the corpus collected?

- By whom?

- Who funded it?

Situation: In what situation was the text written?
Collection process: Was there consent? Pre-
processing?

Annotation process, language variety,
demographics, etc.

Datasheets for Datasets

TIMNIT GEBRU, Black in AI

JAMIE MORGENSTERN, University of Washington
BRIANA VECCHIONE, Cornell University

JENNIFER WORTMAN VAUGHAN, Microsoft Research
HANNA WALLACH, Microsoft Research

HAL DAUME IIl, Microsoft Research; University of Maryland
KATE CRAWFORD, Microsoft Research

1 Introduction

Data plays a critical role in machine learning. Every machine learning model is

trained and avalnated ncino data anite aften in the farm af ctatie datacete The

Text Distributions

Text Distributions and Frequency

Last class:

Zipf’s hypothesis:

Shorter words are more frequent because languages
maximize efficiency: they assigh common meanings
to words that take less effort to produce.

This class:

Zipf’s law: The frequency of a word is inversely
proportional to its frequency ranking.

Zipt's Law

The frequency of a word is proportional to the inverse of its rank.

]L(()Qﬁ (

i e
A SMIE‘(W ~)

wew»k

Zipt's Law Demo

See associated code.

Text Distributions and Frequency

Zipf's Law

Here, frequency and
frequency rank are
calculated on two
separate halves of the
American National
Corpus.

Log, normalized frequency

-10

|
-
N

|
—
s

I
—
(o))

Piantadosi (2014)

0 2 4 6 8 10 12
Log, frequency rank

Text Distributions and Frequency

Proposed explanations for Zipf's Law

e Semantics: there are cross-linguistically stable relationships
between frequency and meaning.

Text Distributions and Frequency

Counter: Zipf's Law holds within domains

a
0

Power law frequencies for number words (“one,” “two,” “three,” etc.) in
English (a), Russian (b), and Italian (c), taken from Piantadosi (2014)

Plus: Zipf's Law holds in artificial languages

Text Distributions and Frequency

Proposed explanations for Zipf's Law

e Memory: since Zipf's Law holds in artificial language learning
experiments, maybe it is due to constraints on human
memory

Text Distributions and Frequency

Zipf's Law holds for other human systems

e Distribution of instructions in computer architecture
e Token sequences in programming languages
e Music

Encoding Text

Talking About Text

How do we start to talk about language?

In our first class, I talked about language as linguists
think about it: through the lens of levels of linguistic
abstraction.

When we handle raw text, though, those layers
aren't always easy to pull apart.

How can we describe text data?

Encoding Text

What do we find in a collection of texts?
At the most basic level, a corpus is a collection of

text data, stored in some encoding.

Encoding Text

Python 3 strings are stored internally as Unicode

each string is a sequence of Unicode code points
(characters)

string functions, regex apply natively to code
points.

len() returns string length in code points, not

bytes

Unicode

Unicode is a method for representing text using:
any character (more than 150,000!)
in almost all scripts (168 to date!)

of the languages of the world:

- Chinese, Arabic, Hindi, Cherokee, Ethiopic,
Khmer, N’Ko,...

- dead ones like Sumerian cuneiform

- invented ones like Klingon

plus emojis, currency symbols, etc.

Unicode

Unicode is a standard encoding format determined

by the Unicode Consortium:

~
~
~

U+FF90

I

U+FF74

(=g

U+261E

r

U+FF62

\

U+FF3C

£5
L4

U+1F4A8

=

U+FE43

¥

U+2021

n

U+2033

U+FF70

N

U+30FE

(<]

U+0665

48 @n | —) .

U+9109 U+0D05 U+53F8 U+FE3B uU+0C18 U+FF65

v iy = ™

U+FFOC U+FF61 U+1F5A4 u+02C7 U+4E09 U+4E2A

b o

Everyone in the world should be able to use
their own language on phones and computers.

© LEARN MORE ABOUT UNICODE

d > x 0 o7 o

U+063A U+098C U+03EB U+03B8 U+0923 U+1F4A6

®@ u N i f o

U+26A2 U+0E9F u+ocac U+1795 U+0F3C U+03C3

*

U+2606

6

u+10DC

&
<
s

A
\

ADOPT A CHARACTER”

v
1

U+01D0

H

u+2307

i
oM
&

4 g
3 £H

VJ

U+2661

U+2691

6oLD ,';n--._
‘s,

E/,

Ry

U+309D

U+2022

Members

Your organization could be here, too. Apply to join now.

Full Members (Voting)

'\‘ [0 cirbnb @MAazon
Adobe

BB Microsoft salesforce @® translated.

Supporting Members (Voting)

i
' Google OQMeta

Stanford

NETFLIX SILICON

Advancing Digitally
Disadvantaged Languages

Berkeley

Bloomberg &

Government of India

Encoding Text

Files need to be encoded/decoded when written or
read

Every file is stored in some encoding
No such thing as a text file without an encoding

If it's not UTF-8 (Unicode), then it's something
older like ASCII or iso 8859 1

Encoding Text

That’s how programming languages encode text
data.

However, humans often talk instead about words.

Talking About Text

Talking About Words

"Seuss’s cat in the hat is different from other cats!"

Cet, cdS

W ord form: ol offlected swfoce
formn
CAt £ cafs

Talking About Words

"Seuss’s cat in the hat is different from other cats!"

Lemma: same stem, part of speech, rough
word sense

Wordform: the full inflected surface form

Talking About Words

they lay back on the San Francisco grass and
looked at the stars

Type: an element of the vocabulary

WA

Token: an instance of that type in running

>

text

Heap's Law

4

Vocabulary size grows at a rate equal to or greater
than the square root of the number of word tokens

T okens =N Types = V1

Switchboard phone conversations 2.4 million 20 thousand
Shakespeare 884,000 31 thousand
COCA 440 million 2 million

Google N-grams 1 trillion 13+ million

Text Processing

Tokenization

Tokenizers map text bits to numeric token ids.

But wait: why can’t we just use words?

Tokenization

Heap’s Law is one reason. There are too many
words in large corpora for words to be an efficient
information representation.

Tokenization

4

Also, if we use words, we’ll run into problems if we

later see a new word (which is always possible,
because language is productive!).

I'm taking NLP. Yay, you're a

< > NLPer too!
<Error: 'NLPer' not found>
|
(. e
| |

TOKENIZER

Tokenization

Finally, finding word boundaries is not trivial for
many languages.

For instance, Chinese is written using characters,
each of which represents a morpheme: a minimal
meaning-bearing unit in a language.

Tokenization

Dividing strings of characters into words is
complex, and there are different systems:

BEERH N 2 RE “Yao Ming reaches the finals”

°yao ming jin ru zong jué sai

3 words? _
kAR HAN SR Chinese Treebank
YaoMing reaches finals

5 words?

Wk BA LN 2 REF Peking University
Yao Ming reaches overall finals

7 words?

% hS 4 \
I i N R = Use characters.
Yao Ming enter enter overall decision game

Tokenization

Options:
White-space / orthographic words
- Lots of languages don't have them
- The number of words grows without bound
Unicode characters
- Too small as tokens for many purposes
Morphemes
- Hard to define/find in many languages

Tokenization

Options:
White-space / orthographic words
- Lots of languages don't have them
- The number of words grows without bound
Unicode characters
- Too small as tokens for many purposes
Morphemes
- Hard to define/find in many languages

Alternative: We use the data to tell us how to tokenize.

Byte Pair Encoding

Byte Pair Encoding

Byte Pair Encoding (BPE) (Sennrich et al., 2016) is
an algorithm for finding an efficient, fixed-length
vocabulary of tokens.

We will learn a mapping from a training corpus.

Byte Pair Encoding Learner

Repeat:
° Choose most frequent

neighboring pair ('A', 'B')
> Add a new merged symbol

('AB') to the vocabulary

° Replace every 'A' 'B' in the

corpus with 'AB'.
Until k merges

Vocabulary
[A, B, C, D, E]
A, B, C, D, E, AB]
[A, B, C, D, E, AB, CAB]

Corpus

ABDC CABEZC
AB DCABECA
AB D CAB E CAB

A B
B

Byte Pair Encoding

Most subword algorithms are run inside space-
separated tokens.

So we commonly first add a special end-of-word
symbol '__"before space in training corpus

Next, separate into letters.

Byte Pair Encoding

Original corpus:

that sweet i guess so that’s that me espresso

Vocabulary (includes space tokens)

_,is,t,h,a,w,e,g,u,o0,',mp,r

Byte Pair Encoding

Vocabulary
_,is,t,h,a,w,e,g,u,0,,m,p,r
Corpus

‘that_

igsweet_ MM(‘

:g_uess_ “’—- — ‘,’_

'S0 _
,S_
‘me _
espresso._

R R R RFRRFRR R W

Byte Pair Encoding

Vocabulary

s, t,hya,w,e,g,u,0,,m, p,r, t_
Corpus /W/”j“"'
that ¥Yh & 1

Sweet.

o
guess _
S0 _

s

‘me _
.espresso_

= = e e e W

Byte Pair Encoding

Vocabulary

_,i,s,t,h,a,w,e,g,u,o0,',m,p,r t,th

Corpus

3:that_

l:sweet_ /\/\efj(

1:1

l:guess _ e s —r 9
l:so =

1:’s _

l:me _

l:g_spre;,so_

Byte Pair Encoding

Vocabulary
_,i,s,t,h,a,w,e,g,u,o0,',m,p,r t, th,es

Corpus

Ethat_ Nox MovALs -
i (}, 5) ~ (4ne)

So_ (ne, +—) - (tnat)
me
.espresso_

el el e e ey

Byte Pair Encoding

Vocabulary

_,i,s,t,h,a,w,e,g,u,o0,’,m,p, r, t, th, es
Corpus

:that_ Next merges:
sweet_

Sl

guess _

S0 _

.15_

‘me _

.espresso_

el el e e ey

Byte Pair Encoding

Once we’re done learning, we run each merge

learned from the training data:

Greedily
In the order we learned them
(test frequencies don't play a role)

So: merge every t h to th, then merge th a to tha, etc.

Result:

"rest_" —> { es ‘,'__

BPE In the Wild

BPE is one of the most widely used tokenizer
learning algorithms for LLMs.

In general, we take Unicode text and encode it using
UTF-8 into bytes. We run the algorithm over the
bytes, rather than characters.

BPE In the Wild

Tiktokenizer

I would like some cake.

https:/ / tiktokenizer.vercel.app/?
model=meta-llama%2FMeta-Llama-3-8B

metacllama/Meta-Llama-3-8B

Token count

6

I-would- like-some:-cake.

40, 1053, 1093, 1063, 19692, 13

<O

https://tiktokenizer.vercel.app/?model=meta-llama/Meta-Llama-3-8B

Text Normalization

Other Normalization Tasks

Working with corpora usually requires text
normalization:

1. Tokenizing (segmenting) words
2. Normalizing word formats

3. Segmenting sentences

Sentence Segmentation

|, ? mostly unambiguous but period “.” is very ambiguous
Sentence boundary
Abbreviations like Inc. or Dr.
Numbers like .02% or 4.3

Common algorithm:
Tokenize first
Use rules or ML to classify a period as either (a) part of the
word or (b) a sentence-boundary.
An abbreviation dictionary can help

Sentence segmentation can then often be done by rules
based on this tokenization.

Normalizing Words

Depending on the application, we might want
to:

Standardize spelling
Use a consistent case (all lowercase)
Separate some morphemes:

didn’'t —> did n’t

Or we might not want to! It depends on the task.

Homework 2

Part 1: tokenization

- Goal: explore different choices to be made in
tokenizing English text

Part 2: sentence segmentation

- Goal: write a robust English sentence
segmenter

