
Prof. Carolyn Anderson
Wellesley College

CS	333:		
Natural	Language	
Processing

Fall	2025

Reminders
✦ Quiz 2 on Tuesday: J&M Chapter 3
✦ HW 2 will be released today
✦ My help hours: Monday 4-5:30

Working	with	Text	
Collections

Working	With	Text	Collections
A corpus is a collection of texts. The NLTK Python
library comes with many corpora:

Corpus Contents
Brown Corpus 15 genres, 1.15M words, tagged, categorized
CMU Pronouncing Dictionary 127k entries
Gutenberg (selections) 18 texts, 2M words
Inaugural Address Corpus US Presidential Inaugural Addresses (1789-present)
Indian POS-Tagged Corpus 60k words, tagged (Bangla, Hindi, Marathi, Telugu)
Movie Reviews 2k movie reviews with sentiment classification
Reuters Corpus 1.3M words, 10k news documents, categorized
Roget's Thesaurus 200k words, formatted text
Shakespeare texts (selections) 8 books in XML format
State of the Union Corpus 485k words, formatted text
Switchboard Corpus (selections) 36 phonecalls, transcribed, parsed
Univ Decl of Human Rights 480k words, 300+ languages

Working	With	Text	Collections
NLTK provides easy methods for accessing a
corpus in different formats:

>>> from nltk.corpus import brown
>>> brown.categories()
['adventure', 'belles_lettres', 'editorial', 'fiction',
'government', 'hobbies', 'humor', 'learned', 'lore', 'mystery',
'news', 'religion', 'reviews', 'romance', 'science_fiction']

>>> brown.words(categories='news')
['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', …]

>>> brown.words(fileids=['cg22'])
['Does', 'our', 'society', 'have', 'a', 'runaway', ',', …]

>>> brown.sents(categories=['news', 'editorial', 'reviews'])
[['The', 'Fulton', 'County'...], ['The', 'jury',
'further' ...], ...]

Corpora
Corpora vary along many dimensions:

✦ Language: 7000+ languages in the world
✦ Variety, like African American Language varieties.
 AAE Twitter posts might include forms like "iont" (I don't)
✦ Code switching, e.g., Spanish/English, Hindi/English:
 S/E: Por primera vez veo a @username actually being hateful! It was beautiful:)
 [For the first time I get to see @username actually being hateful! it was beautiful:)]
✦ Genre: newswire, fiction, scientific articles, Wikipedia
✦ Author Demographics: writer's age, gender, ethnicity,

SES

Corpus	Datasheets
✦ Motivation:

- Why was the corpus collected?
- By whom?
- Who funded it?

✦ Situation: In what situation was the text written?
✦ Collection process: Was there consent? Pre-

processing?
✦ Annotation process, language variety,

demographics, etc.

Text	Distributions

Text	Distributions	and	Frequency

Zipf’s	Law

fir ta
where r is the frequency

rank

Zipf’s	Law	Demo
See associated code.

Text	Distributions	and	Frequency

Text	Distributions	and	Frequency

Text	Distributions	and	Frequency

Text	Distributions	and	Frequency

Text	Distributions	and	Frequency

Encoding	Text

Talking	About	Text
How do we start to talk about language?
In our first class, I talked about language as linguists
think about it: through the lens of levels of linguistic
abstraction.
When we handle raw text, though, those layers
aren't always easy to pull apart.
How can we describe text data?

Encoding	Text
What do we find in a collection of texts?
At the most basic level, a corpus is a collection of
text data, stored in some encoding.

Encoding	Text
 Python 3 strings are stored internally as Unicode

✦ each string is a sequence of Unicode code points
(characters)

✦ string functions, regex apply natively to code
points.
✦ len() returns string length in code points, not

bytes

Unicode
Unicode is a method for representing text using:

✦ any character (more than 150,000!)
✦ in almost all scripts (168 to date!)
✦ of the languages of the world:

- Chinese, Arabic, Hindi, Cherokee, Ethiopic,
Khmer, N’Ko,…

- dead ones like Sumerian cuneiform
- invented ones like Klingon

✦ plus emojis, currency symbols, etc.

Unicode
Unicode is a standard encoding format determined
by the Unicode Consortium:

Encoding	Text
Files need to be encoded/decoded when written or
read

✦ Every file is stored in some encoding
✦ No such thing as a text file without an encoding

✦ If it's not UTF-8 (Unicode), then it's something
older like ASCII or iso_8859_1

Encoding	Text
That’s how programming languages encode text
data.
However, humans often talk instead about words.

Talking	About	Text

Talking	About	Words
"Seuss’s cat in the hat is different from other cats!"

Lemma same stem rough meaning

cat cats

Word form full inflected surface
form

cat cats

Talking	About	Words
"Seuss’s cat in the hat is different from other cats!"

✦ Lemma: same stem, part of speech, rough
word sense

✦ Wordform: the full inflected surface form

Talking	About	Words
they lay back on the San Francisco grass and
looked at the stars

✦ Type: an element of the vocabulary

✦ Token: an instance of that type in running
text

12

13

Heap’s	Law
Vocabulary size grows at a rate equal to or greater
than the square root of the number of word tokens

Text	Processing

Tokenization
Tokenizers map text bits to numeric token ids.

But wait: why can’t we just use words?

Tokenization
Heap’s Law is one reason. There are too many
words in large corpora for words to be an efficient
information representation.

Tokenization
Also, if we use words, we’ll run into problems if we
later see a new word (which is always possible,
because language is productive!).

I’m taking NLP. Yay, you’re a
NLPer too!

<Error: 'NLPer' not found>

TOKENIZER

Tokenization
Finally, finding word boundaries is not trivial for
many languages.
For instance, Chinese is written using characters,
each of which represents a morpheme: a minimal
meaning-bearing unit in a language.

Tokenization
Dividing strings of characters into words is
complex, and there are different systems:

 ⌃⇤�⌅�⇧⇥ “Yao Ming reaches the finals”
◦yáo míng jìn rù zǒng jué sài

 3 words?
 ⌃⇤ �⌅ �⇧⇥
 YaoMing reaches finals

 5 words?
 ⌃ ⇤ �⌅ � ⇧⇥
 Yao Ming reaches overall finals

 7 words?
 ⌃ ⇤ � ⌅ � ⇧ ⇥
 Yao Ming enter enter overall decision game

Chinese Treebank

Peking University

Use characters.

Tokenization
Options:
✦ White-space / orthographic words

- Lots of languages don't have them
- The number of words grows without bound

✦ Unicode characters
- Too small as tokens for many purposes

✦ Morphemes
- Hard to define/find in many languages

Tokenization
Options:
✦ White-space / orthographic words

- Lots of languages don't have them
- The number of words grows without bound

✦ Unicode characters
- Too small as tokens for many purposes

✦ Morphemes
- Hard to define/find in many languages

Alternative: We use the data to tell us how to tokenize.

Byte	Pair	Encoding

Byte	Pair	Encoding
Byte Pair Encoding (BPE) (Sennrich et al., 2016) is
an algorithm for finding an efficient, fixed-length
vocabulary of tokens.

We will learn a mapping from a training corpus.

Byte	Pair	Encoding	Learner

Repeat:
◦ Choose most frequent

neighboring pair ('A', 'B')
◦ Add a new merged symbol

('AB') to the vocabulary
◦ Replace every 'A' 'B' in the

corpus with 'AB'.
 Until k merges

Vocabulary
[A, B, C, D, E]
[A, B, C, D, E, AB]

 [A, B, C, D, E, AB, CAB]
Corpus
A B D C A B E C A B
AB D C AB E C AB
AB D CAB E CAB

Byte	Pair	Encoding
Most subword algorithms are run inside space-
separated tokens.
So we commonly first add a special end-of-word
symbol '__' before space in training corpus
Next, separate into letters.

Byte	Pair	Encoding
Original corpus:

that sweet i guess so that’s that me espresso

Vocabulary (includes space tokens)

__, i, s, t, h, a, w, e, g, u, o, ', m, p, r

Byte	Pair	Encoding
Vocabulary

__, i, s, t, h, a, w, e, g, u, o, ', m, p, r

Corpus

3: t h a t _
1: s w e e t _
1: i _
1: g u e s s _
1: s o _
1: ’ s _
1: m e _
1: e s p r e s s o _

Merge
to

Byte	Pair	Encoding
Vocabulary

__, i, s, t, h, a, w, e, g, u, o, ', m, p, r, t_

Corpus

3: t h a t_
1: s w e e t_
1: i _
1: g u e s s _
1: s o _
1: ’ s _
1: m e _
1: e s p r e s s o _

Merge
th to th

Byte	Pair	Encoding
Vocabulary

__, i, s, t, h, a, w, e, g, u, o, ', m, p, r, t_, th

Corpus

3: th a t_
1: s w e e t_
1: i _
1: g u e s s _
1: s o _
1: ’ s _
1: m e _
1: e s p r e s s o _

Merge
e s es

Byte	Pair	Encoding
Vocabulary

__, i, s, t, h, a, w, e, g, u, o, ', m, p, r, t_, th, es

Corpus

3: th a t_
1: s w e e t_
1: i _
1: g u es s _
1: s o _
1: ’ s _
1: m e _
1: es p r es s o _

Next Merges
th a tha

tha t_ that

Byte	Pair	Encoding

Next merges:

Vocabulary

__, i, s, t, h, a, w, e, g, u, o, ', m, p, r, t_, th, es

Corpus

3: th a t_
1: s w e e t_
1: i _
1: g u es s _
1: s o _
1: ’ s _
1: m e _
1: es p r es s o _

Byte	Pair	Encoding
Once we’re done learning, we run each merge
learned from the training data:
✦ Greedily
✦ In the order we learned them
✦ (test frequencies don't play a role)

So: merge every t h to th, then merge th a to tha, etc.

Result:
 "r e s t _ " —> rest

BPE	In	the	Wild
BPE is one of the most widely used tokenizer
learning algorithms for LLMs.
In general, we take Unicode text and encode it using
UTF-8 into bytes. We run the algorithm over the
bytes, rather than characters.

BPE	In	the	Wild

https://tiktokenizer.vercel.app/?
model=meta-llama%2FMeta-Llama-3-8B

o

https://tiktokenizer.vercel.app/?model=meta-llama/Meta-Llama-3-8B

Text	Normalization

Other	Normalization	Tasks
Working with corpora usually requires text
normalization:
1. Tokenizing (segmenting) words
2. Normalizing word formats
3. Segmenting sentences

!, ? mostly unambiguous but period “.” is very ambiguous
✦ Sentence boundary
✦ Abbreviations like Inc. or Dr.
✦ Numbers like .02% or 4.3

Common algorithm:
✦ Tokenize first
✦ Use rules or ML to classify a period as either (a) part of the

word or (b) a sentence-boundary.
✦ An abbreviation dictionary can help

Sentence segmentation can then often be done by rules
based on this tokenization.

Sentence	Segmentation

✦ Depending on the application, we might want
to:
✦ Standardize spelling
✦ Use a consistent case (all lowercase)
✦ Separate some morphemes:

 didn’t —> did n’t

Normalizing	Words

Or we might not want to! It depends on the task.

Homework	2

✦ Part 1: tokenization
- Goal: explore different choices to be made in

tokenizing English text
✦ Part 2: sentence segmentation

- Goal: write a robust English sentence
segmenter

