
Prof. Carolyn Anderson
Wellesley College

CS	333:		
Natural	Language	
Processing

Fall	2025

 



Reminders
✦ HW 3 will be released today
✦ My help hours: Monday 4-5:30
✦ Quiz 3 (Tuesday) will cover Appendix B
✦ Ashley’s drop-in hour next week shifting to 5-6pm 

due to CS colloquium conflict.





New	Policy
Earn an extra late day by attending a CS research 
talk! 

To qualify, the talk must be in-person with the 
opportunity to ask questions. 

Send me a brief summary of the talk and what you 
learned (1-2 paragraphs), and I will note down an 
extra late day.



Language	Modeling



Goal: compute the probability of a sentence or 
sequence of words:

     P(W) = P(w1,w2,w3,w4,w5…wn)

Related task: probability of an upcoming word:
      P(w5|w1,w2,w3,w4)

A model that computes either of these:
          P(W)     or     P(wn|w1,w2…wn-1)          
                 is called a language model.

Language	Modeling



P(“its water is so transparent”) =

P(w1, w2 . . . wn) = ∏
n

P(wn |w1w2 . . . wn−1)

Chain	Rule
The Chain Rule applied to compute the joint 
probability of words in sentence:



Approximate each component in the product:

Markov	Assumption

P(w1, w2 . . . wn) = ∏
n

P(wn |w1w2 . . . wn−1)

P(w1, w2 . . . wn) ≈ ∏
n

P(wn |wn−k . . . wn−1)



The Maximum Likelihood Estimate

€ 

P(wi |wi−1) =
count(wi−1,wi )
count(wi−1)

Estimating	Bigram	Probabilities



Approximating	Shakespeare



Evaluation	and	Perplexity



✦Does our language model prefer good sentences to bad 
ones?

✦ Assign higher probability to “real” or “frequently observed” 
sentences compared to “ungrammatical” or “rarely observed” 
sentences?

✦We train parameters of our model on a training set.
✦We test the model’s performance on data we haven’t seen.

✦ A test set is an unseen dataset that is different from our training 
set, totally unused.

✦ An evalua0on metric tells us how well our model does on the 
test set.

Evaluation:	How	Good	is	Our	Model?



✦Does our language model prefer good 
sentences to bad ones?

✦ Assign higher probability to “real” or “frequently 
observed” sentences compared to “ungrammatical” 
or “rarely observed” sentences?

 Ethics alert!

Evaluation:	How	Good	is	Our	Model?



✦Best evaluation for comparing models A and B
✦ Put each model in a task

✦  spelling corrector, speech recognizer, MT system
✦ Run the task, get an accuracy for A and for B

✦ How many misspelled words corrected properly
✦ How many words translated correctly

✦ Compare accuracy for A and B

Extrinsic	Evaluation



✦Extrinsic evaluation
✦ Time-consuming; can take days or weeks

✦Instead, we can use intrinsic evaluation: 

Perplexity: 
       a measure of probability distribution similarity 

Intrinsic	Evaluation



Perplexity is a bad approximation unless the test data 
looks just like the training data.

So it is generally only useful in pilot experiments or to 
compare models on the same dataset.

Perplexity



✦The Shannon Game:
✦ How well can we predict the next word?

✦ Unigrams are terrible at this game.  
(Why?)

Perplexity:	An	Intuition

I always order pizza with cheese and ____ 

The 33rd President of the US was ____ 

I saw a ____

mushrooms 0.1 

pepperoni 0.1 

anchovies 0.01 

…. 

fried rice 0.0001 

…. 

and 1e-100

The best model of a text is the one that assigns the 
highest probability to the word that actually occurs.



Perplexity is the inverse probability of the test set, 
normalized by the number of words:

Perplexity

The best language model is one that best predicts an 
unseen test set
• Gives the highest P(sentence)

PP(W) = P(w1w2...wN )
−

1
N

           =
1

P(w1w2...wN )
N

Minimizing perplexity is the same as maximizing probability!



Perplexity

Minimizing perplexity is the same as maximizing probability!

PP(W) = P(w1w2...wN )
−

1
N

           =
1

P(w1w2...wN )
N

Perplexity is the inverse probability of the test set, 
normalized by the number of words:

Perplexity is the inverse probability of 
the test set, normalized by the number 
of words:

                                               Chain rule:

                                              For bigrams: d



✦ Take a language of strings that consist of random 
digits.

✦ What is the perplexity of a sentence according to a 
model that assign P=1/10 to each digit?

Perplexity	As	Branching	Factor

pP w P wine wn

of
N

To
10



✦ Training 38 million words, test 1.5 million words, WSJ

Lower	perplexity	=	better	model

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109

cat the 0.8 C1 the cat the dog

p dog the
0.2

G the cat the cat



Generalization	and	Zeroes



N-grams only work well for word prediction if the test 
corpus looks like the training corpus. But in real life, it 
often doesn’t

✦ We need to train robust models that generalize!
✦ One kind of generalization: Zeros!

✦ Things that don’t ever occur in the training set, 
but occur in the test set

The	Perils	of	OverRitting



✦  N=884,647 tokens, V=29,066
✦ Shakespeare produced 300,000 bigram types out 

of V2= 844 million possible bigrams.
✦ So 99.96% of the possible bigrams were never seen 

(have zero entries in the table)

Shakespeare	as	Corpus



✦ Bigrams with zero probability mean that we will 
assign 0 probability to the test set!

✦ This means we can’t compute perplexity (can’t 
divide by 0)!

Zero	Probability	Bigrams



Smoothing



✦When we have sparse statistics:

✦Steal probability mass to generalize better

The	Intuition	of	Smoothing
P(w | denied the) 
  3 allegations 
  2 reports 
  1 claims 
  1 request 
  7 total all
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✦When we have sparse statistics:

✦Steal probability mass to generalize better

The	Intuition	of	Smoothing
P(w | denied the) 
  3 allegations 
  2 reports 
  1 claims 
  1 request 
  7 total all
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P(w | denied the) 
  2.5 allegations 
  1.5 reports 
  0.5 claims 
  0.5 request 
  2 other 
  7 total



Add-One	Smoothing

PMLE(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

✦Also called Laplace smoothing

✦Key idea: pretend we saw each word one more 
time than we did. Just add one to all the counts!

✦MLE estimate:

✦Add-1 estimate: Padda wilwi i



The maximum likelihood estimate of some parameter of 
a model M from a training set T maximizes the likelihood 
of the training set T given the model M.

✦Suppose the word “bagel” occurs 400 times in a corpus of 
a million words. What is the probability that a random 
word from some other text will be “bagel”?
✦MLE estimate:
✦This may be a bad estimate for some other corpus

✦ But it is the es0mate that makes it most likely that 
“bagel” will occur 400 times in a million word corpus.

Maximum	Likelihood	Estimates



Berkeley	Restaurant	Corpus:		Laplace	smoothed	bigram	counts



Laplace-smoothed	counts



Reconstituted	Counts



Comparison	with	Raw	Bigram	Counts



✦ Add-1 isn’t commonly used for language 
models— there are better methods
✦ But add-1 is used to smooth other NLP models

✦ For text classification 
✦ In domains where the number of zeros isn’t 

so huge.

Add-1	is	a	Naive	Smoothing	Approach



 Interpolation	and	Backoff



✦Sometimes it helps to use less context
✦ Condition on less context for contexts you 

haven’t learned much about  
✦Backoff: 

✦ use trigram if you have good evidence,
✦ otherwise bigram, otherwise unigram

✦Interpolation: 
✦ mix unigram, bigram, trigram models

Interpolation works better

Backoff	and	Interpolation



✦ Simple interpolation: estimate the trigram 
probabilities by mixing unigram, bigram, and 
trigram probabilities. 

✦

Linear	Interpolation



Simple interpolation: estimate the trigram 
probabilities by mixing unigram, bigram, and 
trigram probabilities. 

Let's set arbitrary weights:

Interpolation

= 0.4 = 0.6
p(want|i) =i want to eat

i 5 827 0 9 1200
want 2 0 608 1 900

to 2 0 4 686 930
eat 0 0 2 0 39

1200 900 930 39

0.4pwant 0Opraant
0,4 900 0.6827

856.2



Simple interpolation: estimate the trigram 
probabilities by mixing unigram, bigram, and 
trigram probabilities. 

Let's set arbitrary weights:

Interpolation

= 0.4 = 0.6
p(want|to) =i want to eat

i 5 827 0 9 1200
want 2 0 608 1 900

to 2 0 4 686 930
eat 0 0 2 0 39

1200 900 930 39



✦ Simple interpolation: estimate the trigram 
probabilities by mixing unigram, bigram, and 
trigram probabilities. 

✦Lambdas conditional on context:

Linear	Interpolation



✦ Use a held-out corpus

✦ Choose λs to maximize the probability of held-out data:
✦ Fix the N-gram probabilities (on the training data)
✦ Then search for λs that give largest probability to 

held-out set:

How	to	set	the	lambdas?

Training Data
Held-Out 

Data
Test  
Data

logP(w1...wn |M (λ1...λk )) = logPM (λ1...λk ) (wi |wi−1)
i
∑



✦If we know all the words in advanced
✦ Vocabulary V is fixed
✦ Closed vocabulary task

✦Often we don’t know this
✦ Out Of Vocabulary = OOV words
✦ Open vocabulary task

✦Instead: create an unknown word token <UNK>
✦ Training of <UNK> probabilities

✦ Create a fixed lexicon L of size V
✦ At text normalization phase, any training word not in L changed to  

<UNK>
✦ Now we train its probabilities like a normal word

✦ At decoding time
✦ If text input: Use UNK probabilities for any word not in training

Unknown	words:	Open	versus	closed	vocabulary	tasks



✦ “Stupid backoff” (Brants et al. 2007)
✦ No discounting, just use relative frequencies 

Stupid	Backoff

S(wi |wi−k+1
i−1 ) =

count(wi−k+1
i )

count(wi−k+1
i−1 )

  if  count(wi−k+1
i ) > 0

0.4S(wi |wi−k+2
i−1 )      otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

S(wi ) =
count(wi )

N



✦ Add-1 smoothing:
✦ OK for text categorization, not for language 

modeling
✦ The most commonly used method:

✦ Extended Interpolated Kneser-Ney (Intuition: 
instead of asking “How likely is w?”, ask “How 
likely is w to appear as a novel continuation?

✦ For very large N-grams like the Web:
✦ Stupid backoff

Smoothing



Homework	3
✦ Will be released today
✦ Two parts:

✦ Part 1: using n-gram counts to quantify 
differences between collections of text

✦ Part 2: improving our in-class n-gram language 
model


