CS 333:

Natural Language Fall 2025
Processing

Prof. Carolyn Anderson
Wellesley College

Reminders

HW 3 will be released today
My help hours: Monday 4-5:30
Quiz 3 (Tuesday) will cover Appendix B

Ashley’s drop-in hour next week shifting to 5-6pm
due to CS colloquium conflict.

WELLESLEY

CCCCCCCCCCCCCC

CS CoLLoquium W

i WEDNESDAY, © 4:00PM- [N .‘;
SEPTEMBER 24 5:00 PM
SCI-H105

Everwell

7

Technologies,
/ SNACKS WILL BE SERVED AT 3:45 PM \

WELLESLEY
???2:sb129 s R ;

Accessibility and Disability: accessibility@wellesley.edu

New Policy

Earn an extra late day by attending a CS research
talk!

To qualify, the talk must be in-person with the
opportunity to ask questions.

Send me a brief summary of the talk and what you
learned (1-2 paragraphs), and I will note down an
extra late day:.

Language Modeling

Language Modeling

Goal: compute the probability of a sentence or
sequence of words:
P(W) — P(W1/W2/W3/W4/W5' . 'Wn)

Related task: probability of an upcoming word:

P(ws | wy,wy,ws,wy)

A model that computes either of these:
P(W) or Pw,lw,w,...w.4)
is called a language model.

Chain Rule

The Chain Rule applied to compute the joint
probability of words in sentence:

P(WI,W2. . Wn) — HP(Wn|W1W2 . .Wn_l)

P(“its water is so transparent”) =

Markov Assumption

Approximate each component in the product:

PWi,wy...w,) = HP(wn lwiw,y..ow,)

P(W19W2° . Wn) ~ HP(Wnlwn—k . ‘Wn—l)

Estimating Bigram Probabilities

The Maximum Likelihood Estimate

count(w,_,, w;)

Piw. |w.)=
(I‘ /—1) COU”t(VVI-_l)

Approximating Shakespeare

~To him swallowed confess hear both. Which. Of save on trail for are ay device and
1 rote life have
gram —Hill he late speaks; or! a more to leg less first you enter

~Why dost stand forth thy canopy. forsooth; he is this palpable hit the King Henry. Live
2 king. Follow.

gram ~What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,

3 'tis done.

gram —This shall forbid it should be branded. if renown made it empty.

—~King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
4 great banquet serv'd in;
gram —It cannot be but so.

Evaluation and Perplexity

Evaluation: How Good is Our Model?

4

Does our language model prefer good sentences to bad

ones?

Assign higher probability to “real” or “frequently observed”

sentences compared to “ungrammatical” or “rarely observed”
sentences?

We train parameters of our model on a training set.

We test the model’s performance on data we haven’t seen.
A test set is an unseen dataset that is different from our training

set, totally unused.
An evaluation metric tells us how well our model does on the

test set.

Evaluation: How Good is Our Model?

4

Does our language model prefer good

sentences to bad ones?

Assign higher probability to “real” or “frequently

observed” sentences compared to “ungrammatical”
or “rarely observed” sentences?

Ethics alert!

Extrinsic Evaluation

Best evaluation for comparing models A and B
Put each model in a task

spelling corrector, speech recognizer, MT system
Run the task, get an accuracy for A and for B
How many misspelled words corrected properly
How many words translated correctly
Compare accuracy for A and B

Intrinsic Evaluation

4

Extrinsic evaluation
Time-consuming; can take days or weeks

Instead, we can use intrinsic evaluation:

Perplexity:
a measure of probability distribution similarity

Perplexity

4

Perplexity is a bad approximation unless the test data

looks just like the training data.

So it is generally only useful in pilot experiments or to
compare models on the same dataset.

Perplexity: An Intuition

The Shannon Game:

How well can we predict the next word?

| always order pizza with cheese and

The 33rd President of the US was

| saw a

Unigrams are terrible at this game.
(Why?)

i

/~ mushrooms 0.1
pepperoni 0.1

anchovies 0.01

fried rice 0.0001

_ and 1e-100

The best model of a text is the one that assigns the
highest probability to the word that actually occurs.

Perplexity

Perplexity is the inverse probability of the test set,
normalized by the number of words:

The best language model is one that best predicts an
unseen test set

* Gives the highest P(sentence)

1

PRIW) = Pww...wy) N

Minimizing perplexity is the same as maximizing probability!

Perplexity

Perplexity is the inverse probability of the test set,
normalized by the number of words:

1

Perplexity is the inverse probability of PRW) = P(wwy...wy) "
the test set, normalized by the number 1
of words:) A\I/P(Wlwz.. wy)
° . N N 1
Chain rule: PP(W) = J]} e Tr——

N
1
° _ N
For bigrams: PP(W) = J,- Poviiy) J

Minimizing perplexity is the same as maximizing probability!

Perplexity As Branching Factor

Take a language of strings that consist of random
digits.

What is the perplexity of a sentence according to a
model that assign P=1/10 to each digit?

PO P (e o vy Y™
- ()
- |

. L
10

z 0

Lower perplexity = better model

Training 38 million words, test 1.5 million words, WS]J

Q(CJ\/W\ID =(.% Ce- Mo oot e cﬁtﬁ

G e oab e o

Generalization and Zeroes

The Perils of Overtitting

4

N-grams only work well for word prediction if the test
corpus looks like the training corpus. But in real life, it
often doesn’t

We need to train robust models that generalize!

One kind of generalization: Zeros!

Things that don’t ever occur in the training set,
but occur in the test set

Shakespeare as Corpus

N=884,647 tokens, V=29,066

Shakespeare produced 300,000 bigram types out
of V2= 844 million possible bigrams.

S0 99.96% of the possible bigrams were never seen
(have zero entries in the table)

Zero Probability Bigrams

Bigrams with zero probability mean that we will
assign 0 probability to the test set!

This means we can’t compute perplexity (can’t
divide by 0)!

Smoothing

The Intuition of Smoothing

When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

attack
man
outcome

Steal probability mass to generalize better

allegations .
reports l

lai
requ][
[attack
] man
outcome

|9

The Intuition of Smoothing

When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

attack
man
outcome

Steal probability mass to generalize better

P(w | denied the)

2.5 allegations A
1.5 reports 2. 0
0.5 claims o e x o
2 8_ s| 8 & 2
0.5 request Slellg|8|F E 3 ...
2 other Sl €l

7 total

Add-One Smoothing

Also called Laplace smoothing

Key idea: pretend we saw each word one more
time than we did. Just add one to all the counts!

MLE estimate: P (W|w,)= AW, W)
aw.,)

C,(\N.'-\, wi)+
C(W'»Q‘l'\/

Add-1 estimate: Qadda (WE \w-\-\\ -

Maximum Likelihood Estimates

The maximum likelihood estimate of some parameter of
a model M from a training set T maximizes the likelihood
of the training set T given the model M.

Suppose the word “bagel” occurs 400 times in a corpus of
a million words. What is the probability that a random
word from some other text will be “bagel”?

MLE estimate:
This may be a bad estimate for some other corpus
But it is the estimate that makes it most likely that

“bagel” will occur 400 times in a million word corpus.

Berkeley Restaurant Corpus:

Laplace smoothed bigram counts

1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 | 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Laplace-smoothed counts

p* N C(Wn—lwn) 1
(Wn ‘Wn—l) —
C (Wn—1) +V

1 want to eat chinese | food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084| 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026 | 0.0013 0.18 0.00078| 0.00026| 0.0018 0.055
eat 0.00046| 0.00046(0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062(0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056| 0.0011 0.00056| 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058| 0.00058| 0.00058| 0.00058| 0.00058

Reconstituted Counts

c’ (Wn—lwn.) —

[C(Wn—lwn) T 1] X C(Wn—l)

C(W,,_l) +V

1 want to eat chinese | food| lunch| spend
1 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 4.4 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38(0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Comparison with Raw Bigram Counts

L 4
1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| O 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
1 want to eat chinese | food| lunch| spend
1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38] 0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16| 0.16 0.16

Add-1 is a Naive Smoothing Approach

Add-1 isn’t commonly used for language
models— there are better methods
But add-1 is used to smooth other NLP models

For text classification

In domains where the number of zeros isn’t
so huge.

Interpolation and Backoft

Backoff and Interpolation

Sometimes it helps to use less context

Condition on less context for contexts you
haven’t learned much about

Backoff:
use trigram if you have good evidence,
otherwise bigram, otherwise unigram
Interpolation:

mix unigram, bigram, trigram models

Interpolation works better

Linear Interpolation

Simple interpolation: estimate the trigram
probabilities by mixing unigram, bigram, and
trigram probabilities.

P(wnlwn—ZWn—l) — A]P(Wn) Zli =1
+/’LZP(Wn|Wn—1)
A'3P(wn|wn—2wn—1)

Interpolation

¢ .

Simple interpolation: estimate the trigram
probabilities by mixing unigram, bigram, and
trigram probabilities.

B(Wn|Wp_oWn_1) = MP(wy) » Ai=1
+A2P(Wn|Wn—1) i
+A3P(Wp|Wy_2Wp_1)

Let's set arbitrary weights: *~ =0.4 rM=0.6

i want to eat 1 "7 = p(want]i) = \
e o 0.4 p(war) 0. Gt
to 2 0 ;] 636 5930 E = 04 - 900 = 06 (822
o = s N B X

Interpolation

Simple interpolation: estimate the trigram
probabilities by mixing unigram, bigram, and
trigram probabilities.

B(Wn|Wp_oWn_1) = MP(wy) » Ai=1
+A2P(Wn|Wn—1) i
+A3P(Wp|Wy_2Wp_1)

Let's set arbitrary weights: *~ =0.4 rM=0.6

i want to eat ot T R p(want]|to) =
[5 827 0 9 '1200
want 2 0 608 1 1900
1
1
to 2 0) 4 686 :930
eat 0) 0 2 0 39
o-..|12000_[900 _ 1930 139 i .3

Linear Interpolation

Simple interpolation: estimate the trigram
probabilities by mixing unigram, bigram, and
trigram probabilities.

P(wn|wn_2wn_1) = MP(wy)

+A«2P(Wn|Wn—1) le =1
+A3P(Wn|wn—2wn—l) l

Lambdas conditional on context:

P(Wn‘wn—2wn—l) — }“l (W;::é)P(Wn‘Wn—an—l)

+}\2 (W”_l)P(Wn ‘Wn—l)

n—2

+ A3 (W”_l)P(w,)

/
n—2

How to set the lambdas?

Use a held-out corpus

o Held-Out Test
Training Data Data Data

Choose As to maximize the probability of held-out data:

Fix the N-gram probabilities (on the training data)

Then search for As that give largest probability to
held-out set:

log P(W;...w, | M(h,... k) = Y log By, . (W, | W)

Unknown words: Open versus closed vocabulary tasks

4

If we know all the words in advanced
Vocabulary V is fixed
Closed vocabulary task

Often we don’t know this
Out Of Vocabulary = OOV words

Open vocabulary task
Instead: create an unknown word token <UNK>
Training of <UNK> probabilities
Create a fixed lexicon L of size V

At text normalization phase, any training word not in L changed to
<UNK>

Now we train its probabilities like a normal word
At decoding time
If text input: Use UNK probabilities for any word not in training

Stupid Backoff

“Stupid backoff” (Brants et al. 2007)

No discounting, just use relative frequencies

count(W_,,)

Sw, | W,)=1 count(w het)
048w |w.,.,) otherwise

if count(w_,.)>0

count(W)

Sw) = Y

Smoothing

Add-1 smoothing:

OK for text categorization, not for language
modeling

The most commonly used method:

Extended Interpolated Kneser-Ney (Intuition:
instead of asking “How likely is w?”, ask “How
likely is w to appear as a novel continuation?

For very large N-grams like the Web:
Stupid backoft

Homework 3

Will be released today
Two parts:

Part 1: using n-gram counts to quantity
differences between collections of text

Part 2: improving our in-class n-gram language
model

