
Prof. Carolyn Anderson
Wellesley College

CS	333:		
Natural	Language	
Processing

Fall	2025

Reminders
✦ HW 3 will be released today
✦ My help hours: Monday 4-5:30
✦ Quiz 3 (Tuesday) will cover Appendix B
✦ Ashley’s drop-in hour next week shifting to 5-6pm

due to CS colloquium conflict.

New	Policy
Earn an extra late day by attending a CS research
talk!

To qualify, the talk must be in-person with the
opportunity to ask questions.

Send me a brief summary of the talk and what you
learned (1-2 paragraphs), and I will note down an
extra late day.

Language	Modeling

Goal: compute the probability of a sentence or
sequence of words:

 P(W) = P(w1,w2,w3,w4,w5…wn)

Related task: probability of an upcoming word:
 P(w5|w1,w2,w3,w4)

A model that computes either of these:
 P(W) or P(wn|w1,w2…wn-1)
 is called a language model.

Language	Modeling

P(“its water is so transparent”) =

P(w1, w2 . . . wn) = ∏
n

P(wn |w1w2 . . . wn−1)

Chain	Rule
The Chain Rule applied to compute the joint
probability of words in sentence:

Approximate each component in the product:

Markov	Assumption

P(w1, w2 . . . wn) = ∏
n

P(wn |w1w2 . . . wn−1)

P(w1, w2 . . . wn) ≈ ∏
n

P(wn |wn−k . . . wn−1)

The Maximum Likelihood Estimate

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

Estimating	Bigram	Probabilities

Approximating	Shakespeare

Evaluation	and	Perplexity

✦Does our language model prefer good sentences to bad
ones?

✦ Assign higher probability to “real” or “frequently observed”
sentences compared to “ungrammatical” or “rarely observed”
sentences?

✦We train parameters of our model on a training set.
✦We test the model’s performance on data we haven’t seen.

✦ A test set is an unseen dataset that is different from our training
set, totally unused.

✦ An evalua0on metric tells us how well our model does on the
test set.

Evaluation:	How	Good	is	Our	Model?

✦Does our language model prefer good
sentences to bad ones?

✦ Assign higher probability to “real” or “frequently
observed” sentences compared to “ungrammatical”
or “rarely observed” sentences?

 Ethics alert!

Evaluation:	How	Good	is	Our	Model?

✦Best evaluation for comparing models A and B
✦ Put each model in a task

✦ spelling corrector, speech recognizer, MT system
✦ Run the task, get an accuracy for A and for B

✦ How many misspelled words corrected properly
✦ How many words translated correctly

✦ Compare accuracy for A and B

Extrinsic	Evaluation

✦Extrinsic evaluation
✦ Time-consuming; can take days or weeks

✦Instead, we can use intrinsic evaluation:

Perplexity:
 a measure of probability distribution similarity

Intrinsic	Evaluation

Perplexity is a bad approximation unless the test data
looks just like the training data.

So it is generally only useful in pilot experiments or to
compare models on the same dataset.

Perplexity

✦The Shannon Game:
✦ How well can we predict the next word?

✦ Unigrams are terrible at this game.
(Why?)

Perplexity:	An	Intuition

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

The best model of a text is the one that assigns the
highest probability to the word that actually occurs.

Perplexity is the inverse probability of the test set,
normalized by the number of words:

Perplexity

The best language model is one that best predicts an
unseen test set
• Gives the highest P(sentence)

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Minimizing perplexity is the same as maximizing probability!

Perplexity

Minimizing perplexity is the same as maximizing probability!

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Perplexity is the inverse probability of the test set,
normalized by the number of words:

Perplexity is the inverse probability of
the test set, normalized by the number
of words:

 Chain rule:

 For bigrams: d

✦ Take a language of strings that consist of random
digits.

✦ What is the perplexity of a sentence according to a
model that assign P=1/10 to each digit?

Perplexity	As	Branching	Factor

pP w P wine wn

of
N

To
10

✦ Training 38 million words, test 1.5 million words, WSJ

Lower	perplexity	=	better	model

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109

cat the 0.8 C1 the cat the dog

p dog the
0.2

G the cat the cat

Generalization	and	Zeroes

N-grams only work well for word prediction if the test
corpus looks like the training corpus. But in real life, it
often doesn’t

✦ We need to train robust models that generalize!
✦ One kind of generalization: Zeros!

✦ Things that don’t ever occur in the training set,
but occur in the test set

The	Perils	of	OverRitting

✦ N=884,647 tokens, V=29,066
✦ Shakespeare produced 300,000 bigram types out

of V2= 844 million possible bigrams.
✦ So 99.96% of the possible bigrams were never seen

(have zero entries in the table)

Shakespeare	as	Corpus

✦ Bigrams with zero probability mean that we will
assign 0 probability to the test set!

✦ This means we can’t compute perplexity (can’t
divide by 0)!

Zero	Probability	Bigrams

Smoothing

✦When we have sparse statistics:

✦Steal probability mass to generalize better

The	Intuition	of	Smoothing
P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request
 7 total all

eg
at
io
ns

re
po
rts

cla
im
s

at
ta

ck

re
qu
es
t

m
an

ou
tc

om
e

…

at
ta

ck

m
an

ou
tc

om
e

…all
eg
at
io
ns

re
po
rts

cla
im
s

re
qu
es
t

✦When we have sparse statistics:

✦Steal probability mass to generalize better

The	Intuition	of	Smoothing
P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request
 7 total all

eg
at
io
ns

re
po
rts

cla
im
s

at
ta

ck

re
qu
es
t

m
an

ou
tc

om
e

…

at
ta

ck

m
an

ou
tc

om
e

…all
eg
at
io
ns

re
po
rts

cla
im
s

re
qu
es
t

P(w | denied the)
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other
 7 total

Add-One	Smoothing

PMLE(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

✦Also called Laplace smoothing

✦Key idea: pretend we saw each word one more
time than we did. Just add one to all the counts!

✦MLE estimate:

✦Add-1 estimate: Padda wilwi i

The maximum likelihood estimate of some parameter of
a model M from a training set T maximizes the likelihood
of the training set T given the model M.

✦Suppose the word “bagel” occurs 400 times in a corpus of
a million words. What is the probability that a random
word from some other text will be “bagel”?
✦MLE estimate:
✦This may be a bad estimate for some other corpus

✦ But it is the es0mate that makes it most likely that
“bagel” will occur 400 times in a million word corpus.

Maximum	Likelihood	Estimates

Berkeley	Restaurant	Corpus:		Laplace	smoothed	bigram	counts

Laplace-smoothed	counts

Reconstituted	Counts

Comparison	with	Raw	Bigram	Counts

✦ Add-1 isn’t commonly used for language
models— there are better methods
✦ But add-1 is used to smooth other NLP models

✦ For text classification
✦ In domains where the number of zeros isn’t

so huge.

Add-1	is	a	Naive	Smoothing	Approach

 Interpolation	and	Backoff

✦Sometimes it helps to use less context
✦ Condition on less context for contexts you

haven’t learned much about
✦Backoff:

✦ use trigram if you have good evidence,
✦ otherwise bigram, otherwise unigram

✦Interpolation:
✦ mix unigram, bigram, trigram models

Interpolation works better

Backoff	and	Interpolation

✦ Simple interpolation: estimate the trigram
probabilities by mixing unigram, bigram, and
trigram probabilities.

✦

Linear	Interpolation

Simple interpolation: estimate the trigram
probabilities by mixing unigram, bigram, and
trigram probabilities.

Let's set arbitrary weights:

Interpolation

= 0.4 = 0.6
p(want|i) =i want to eat

i 5 827 0 9 1200
want 2 0 608 1 900

to 2 0 4 686 930
eat 0 0 2 0 39

1200 900 930 39

0.4pwant 0Opraant
0,4 900 0.6827

856.2

Simple interpolation: estimate the trigram
probabilities by mixing unigram, bigram, and
trigram probabilities.

Let's set arbitrary weights:

Interpolation

= 0.4 = 0.6
p(want|to) =i want to eat

i 5 827 0 9 1200
want 2 0 608 1 900

to 2 0 4 686 930
eat 0 0 2 0 39

1200 900 930 39

✦ Simple interpolation: estimate the trigram
probabilities by mixing unigram, bigram, and
trigram probabilities.

✦Lambdas conditional on context:

Linear	Interpolation

✦ Use a held-out corpus

✦ Choose λs to maximize the probability of held-out data:
✦ Fix the N-gram probabilities (on the training data)
✦ Then search for λs that give largest probability to

held-out set:

How	to	set	the	lambdas?

Training Data
Held-Out

Data
Test
Data

logP(w1...wn |M (λ1...λk)) = logPM (λ1...λk) (wi |wi−1)
i
∑

✦If we know all the words in advanced
✦ Vocabulary V is fixed
✦ Closed vocabulary task

✦Often we don’t know this
✦ Out Of Vocabulary = OOV words
✦ Open vocabulary task

✦Instead: create an unknown word token <UNK>
✦ Training of <UNK> probabilities

✦ Create a fixed lexicon L of size V
✦ At text normalization phase, any training word not in L changed to

<UNK>
✦ Now we train its probabilities like a normal word

✦ At decoding time
✦ If text input: Use UNK probabilities for any word not in training

Unknown	words:	Open	versus	closed	vocabulary	tasks

✦ “Stupid backoff” (Brants et al. 2007)
✦ No discounting, just use relative frequencies

Stupid	Backoff

S(wi |wi−k+1
i−1) =

count(wi−k+1
i)

count(wi−k+1
i−1)

 if count(wi−k+1
i) > 0

0.4S(wi |wi−k+2
i−1) otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

S(wi) =
count(wi)

N

✦ Add-1 smoothing:
✦ OK for text categorization, not for language

modeling
✦ The most commonly used method:

✦ Extended Interpolated Kneser-Ney (Intuition:
instead of asking “How likely is w?”, ask “How
likely is w to appear as a novel continuation?

✦ For very large N-grams like the Web:
✦ Stupid backoff

Smoothing

Homework	3
✦ Will be released today
✦ Two parts:

✦ Part 1: using n-gram counts to quantify
differences between collections of text

✦ Part 2: improving our in-class n-gram language
model

