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Reminders
✦ HW 3 due on Thursday
✦ Caroline’s drop-in hour is today
✦ Ashley’s drop-in hour shifting to 5-6pm tomorrow 

due to CS colloquium conflict.
✦ My help hours: Thursday 4-5





New	Policy
Earn an extra late day by attending a CS research 
talk! 

To qualify, the talk must be in-person with the 
opportunity to ask questions. 

Send me a brief summary of the talk and what you 
learned (1-2 paragraphs), and I will note down an 
extra late day.



Curiosity	Points	on	HW	1
People did very interesting things on HW 1!

✦ Lots of improvements to chatbot:
- Rhyme analysis, user ratings, Jaccard similarity, 

repetition preferences, better error handling…
✦ Extra regex practice
✦ Literature search on regex, on chatbots, on poetry 

generation
✦ Thorough analyses, including a user study
✦ Exploration of sentiment in a different corpus



Text	ClassiCication	Tasks

https://xkcd.com/2451/



Is	this	spam?



• Anonymous essays try 
to convince New York 
to ratify U.S 
Constitution written 
by  Jay, Madison, 
Hamilton.  

• Authorship of 12 of 
the letters in dispute

• Solved by Mosteller 
and Wallace (1963) 
using Bayesian 
methods

Who	wrote	which	Federalist	papers?

Image: Tyler Feder (https://www.allfreepapercrafts.com/Free-Printables/Hamilton-Paper-Dolls)

https://www.allfreepapercrafts.com/Free-Printables/Hamilton-Paper-Dolls


Movie:  is this review posi-ve or nega-ve? 
Products: what do people think about the new iPhone? 
Public sen1ment: how is consumer confidence?  
Poli1cs: what do people think about this candidate or 
issue? 
Predic1on: predict elec-on outcomes or market trends 
from sen-ment

Sentiment	Analysis



Sentiment analysis is the detection of a"tudes 

Today we will simply ask: 
✦ Is the attitude of this text positive or negative?

Sentiment	Analysis



DeCining	the	Text	
ClassiCication	Task



Input: 
✦  a document d
✦  a fixed set of classes  C = {c1, c2,…, cJ}

Output: a predicted class c ∈ C

Text	ClassiCication



✦ Rules based on combinations of words or other 
features:

            negative: ! OR (“didn't” AND “like”)
✦ Accuracy can be high if the rules are carefully 

refined by an expert
✦ But building and maintaining is expensive. Plus, 

what happens when the new fight cloud emoji 
gets added this year? 

Text	ClassiCication:	Hard-Coded	Rules



Input: 
✦ a document d
✦  a fixed set of classes  C = {c1, c2,…, cJ} 

✦ A training set of m labeled documents (d1,c1),....,(dm,cm)

Output: 
✦ a learned classifier γ:d  c

Text	ClassiCication:	Supervised	Machine	Learning



There are many kinds of classifiers
✦ Naïve Bayes
✦ Logistic regression
✦ Neural networks
✦ k-Nearest Neighbors
✦ …

Supervised	Machine	Learning	ClassiCiers



Naive	Bayes	ClassiCiers

https://xkcd.com/2059/



"Naive" classification method based on Bayes rule:

Naive	Bayes	Intuition

Image: Jim Kulich (https://www.elmhurst.edu/blog/thomas-bayes)

https://www.elmhurst.edu/blog/thomas-bayes


A "naive" classification method based on Bayes 
rule:

Naive	Bayes	Intuition



A "naive" classification method based on Bayes rule:

P(A|B) = P(B) P(B|A) / P(A)

P(label|features) = P(label) P(features|label)

Naive	Bayes	Intuition



A "naive" classification method based on Bayes 
rule.

Usually used with a simplified 
representation of a document 
called a bag of words

Naive	Representation

Image: Khulood Nasher (https://khuloodnasher.medium.com/bag-of-words-e2969110843)

https://khuloodnasher.medium.com/bag-of-words-e2969110843


Bag	of	Words	Representation



Word	Counts	as	Features

γ( )=c
seen 2
sweet 1
whimsical 1
recommend 1
happy 1

... ...



For a document d and a class c:

Bayes	Rule	Applied	to	Documents

P(c | d) = P(d | c)P(c)
P(d)



cMAP = argmax
c∈C

P(c | d)

= argmax
c∈C

P(d | c)P(c)
P(d)

= argmax
c∈C

P(d | c)P(c)

MAP is 
“maximum a 
posteriori”  = 
most likely 
class

Bayes Rule

Dropping the 
denominator

Naive	Bayes	ClassiCier



cMAP = argmax
c∈C

P(d | c)P(c)

= argmax
c∈C

P(x1, x2,…, xn | c)P(c)

Naive	Bayes	ClassiCier



cMAP = argmax
c∈C

P(d | c)P(c)

Document d 
represented as 
features x1..xn

= argmax
c∈C

P(x1, x2,…, xn | c)P(c)

"Likelihood" "Prior"

Naive	Bayes	ClassiCier



How often does 
this class occur?

cMAP = argmax
c∈C

P(x1, x2,…, xn | c)P(c)

We can count 
frequencies in a 
corpus

Naive	Bayes	ClassiCier



cMAP = argmax
c∈C

P(x1, x2,…, xn | c)P(c)

O(|X|n•|C|) parameters

Could only be estimated if a 
very, very large number of 
training examples was available.

Naive	Bayes	ClassiCier



Multinomial	Naive	Bayes:	Assumptions
Bag of Words Assumption: Assume position 
doesn’t matter



Bag of Words Assumption: Assume position 
doesn’t matter
Conditional Independence: Assume the feature 
probabilities P(xi|cj) are independent given the 
class c.

Multinomial	Naive	Bayes:	Assumptions

P(x1,…, xn | c) = P(x1 | c)•P(x2 | c)•P(x3 | c)•...•P(xn | c)



cMAP = argmax
c∈C

P(x1, x2,…, xn | c)P(c)

cNB = argmax
c∈C

P(cj ) P(x | c)
x∈X
∏

Multinomial	Naive	Bayes



cNB = argmax
cj∈C

P(cj ) P(xi | cj )
i∈positions
∏

positions ← all word posi-ons in test document      
   

Multinomial	Naive	Bayes



There's a problem with this:

Multiplying lots of probabilities can result in floating-point 
underflow!

.0006 * .0007 * .0009 * .01 * .5 * .000008….

One	Issue

cNB = argmax
cj∈C

P(cj ) P(xi | cj )
i∈positions
∏



Log	Fix

cNB = argmax
cj∈C

P(cj ) P(xi | cj )
i∈positions
∏

There's a problem with this:

Multiplying lots of probabilities can result in floating-point 
underflow!

.0006 * .0007 * .0009 * .01 * .5 * .000008….

Solution:   Use logs, because  log(ab) = log(a) + log(b)
We'll sum logs of probabilities instead of multiplying probabilities!



Instead of this:
cNB = argmax

cj∈C
P(cj ) P(xi | cj )

i∈positions
∏

Multinomial	Naive	Bayes



Instead of this:

This:

Notes:
1) Taking log doesn't change the ranking of classes!
The class with highest probability also has highest log 

probability!
2) It's a linear model:
Just a max of a sum of weights: a linear function of the inputs
So Naive Bayes is a linear classifier

cNB = argmax
cj∈C

P(cj ) P(xi | cj )
i∈positions
∏

Multinomial	Naive	Bayes



Naive	Bayes	ClassiCication:	
Training	Phase



Sec.13.3

P̂(wi | cj ) =
count(wi ,cj )
count(w,cj )

w∈V
∑

𝑃̂(𝑐𝑗) =
𝑁𝑐𝑗

𝑁𝑡𝑜𝑡𝑎𝑙

Learning	A	Multinomial	Naive	Bayes	Model
First attempt: maximum likelihood estimates.
Simply use the frequencies in the data!



✦ Create mega-document for topic j by 
concatenating all docs in this topic. 

✦ Use frequency of w in mega-document

Learning	A	Multinomial	Naive	Bayes	Model

P̂(wi | cj ) =
count(wi ,cj )
count(w,cj )

w∈V
∑



✦ Create mega-document for topic j by 
concatenating all docs in this topic. 

✦ Use frequency of w in mega-document

P̂(wi | cj ) =
count(wi ,cj )
count(w,cj )

w∈V
∑

Learning	A	Multinomial	Naive	Bayes	Model

fraction of times 
word wi appears 

among all words in 
documents of topic cj



What if we have seen no training documents with the 
word fantas'c  and classified in the topic posi1ve 
(thumbs-up)?

Problem	with	Maximum	Likelihood

P̂("fantastic" positive) =  count("fantastic", positive)
count(w, positive

w∈V
∑ )

 =  0

Sec.13.3



What if we have seen no training documents with 
the word fantas'c  and classified in the topic posi1ve 
(thumbs-up)?

If we naively multiply, we will lose *all* 
probability for this class!

Problem	with	Maximum	Likelihood

P̂("fantastic" positive) =  count("fantastic", positive)
count(w, positive

w∈V
∑ )

 =  0

Sec.13.3

cMAP = argmaxc P̂(c) P̂(xi | c)i∏



Solution:	Smoothing!

P̂(wi | c) =
count(wi ,c)
count(w,c)( )

w∈V
∑

Laplace 
(add-1) 
smoothing for 
Naive Bayes:

=
count(wi ,c)+1

count(w,c
w∈V
∑ )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  +  V



Training	A	Multinomial	Naive	Bayes	ClassiCier
✦ Step 1: from training corpus, extract vocabulary V 
✦ Step 2: Calculate priors
✦ Step 3: Calculate likelihoods



Calculating	Priors
Calculate priors:

✦ For each cj in C:

 docsj = n docs in class c

p(cj) = P(cj )←
| docsj |

| total # documents|



Calculating	Likelihoods
Calculate likelihoods:

✦ Textj = single doc containing all docsj 

✦ For each word wk in V:

    nk = # of wk in Textj

     p(wk|cj) = P(wk | cj )←
nk +α

n+α |Vocabulary |

where  = smoothing parameterα



What about unknown words: words that appear in 
our test data but not in our training data or 
vocabulary?
We ignore them:
✦ Remove them from the test document!
✦ Pretend they weren't there!
✦ Don't include any probability for them at all!
Why don't we build an unknown word model?
✦ Generally it doesn’t help to know which class has 

more unknown words.

Unknown	Words



Sentiment	Analysis:	A	
Binary	Naive	Bayes	Example



Let’s work through a sentiment analysis example:

Sentiment	Analysis



Smoothed	Model
1. Priors from training:

2. Drop unknown words 
    ("with")

3. Likelihoods from training:
4. Score test set:



Smoothed	Model
1. Priors from training:

2. Drop unknown words 
    ("with")

3. Likelihoods from training:
4. Score test set:



For tasks like sentiment, word occurrence seems to 
be more important than word frequency.

✦ The occurrence of the word fantas1c tells us a lot
✦ The fact that it occurs 5 times may not tell us 

much more.

Binary Naive Bayes:  
clip word counts at 1 to create binary features

Optimizing	for	Sentiment	Analysis



Can use features that track counts in sentiment 
lexicons: 
✦ Features represent "this word occurs in the posi1ve 

lexicon" or "this word occurs in the nega1ve lexicon"
Now all positive words (good, great, beau1ful, 
wonderful) or negative words count for that feature.
Using 1-2 features isn't as good as using all the words.
✦ But when training data is sparse or not 

representative of the test set, supplementing with 
lexicon features can help

Sentiment	Lexicons



Home page: https://mpqa.cs.pitt.edu/lexicons/
subj_lexicon/
6885 words from 8221 lemmas, annotated for intensity 
(strong/weak)
✦ 2718 positive
✦ 4912 negative
+ : admirable, beau1ful, confident, dazzling, ecsta1c, favor, glee, 
great 
− : awful, bad, bias, catastrophe, cheat, deny, envious, foul, 
harsh, hate 

MPQA	Subjectivity	Cues	Lexicon

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann (2005). Recognizing Contextual 
Polarity in 
Phrase-Level Sentiment Analysis. Proc. of HLT-EMNLP-2005.

Riloff and Wiebe (2003). Learning extraction patterns for subjective expressions. 
EMNLP-2003.

https://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
https://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
https://mpqa.cs.pitt.edu/lexicons/subj_lexicon/

