
Prof. Carolyn Anderson
Wellesley College

CS	333:		
Natural	Language	
Processing

Fall	2025

Reminders
✦ HW 3 due on Thursday
✦ Caroline’s drop-in hour is today
✦ Ashley’s drop-in hour shifting to 5-6pm tomorrow

due to CS colloquium conflict.
✦ My help hours: Thursday 4-5

New	Policy
Earn an extra late day by attending a CS research
talk!

To qualify, the talk must be in-person with the
opportunity to ask questions.

Send me a brief summary of the talk and what you
learned (1-2 paragraphs), and I will note down an
extra late day.

Curiosity	Points	on	HW	1
People did very interesting things on HW 1!

✦ Lots of improvements to chatbot:
- Rhyme analysis, user ratings, Jaccard similarity,

repetition preferences, better error handling…
✦ Extra regex practice
✦ Literature search on regex, on chatbots, on poetry

generation
✦ Thorough analyses, including a user study
✦ Exploration of sentiment in a different corpus

Text	ClassiCication	Tasks

https://xkcd.com/2451/

Is	this	spam?

• Anonymous essays try
to convince New York
to ratify U.S
Constitution written
by Jay, Madison,
Hamilton.

• Authorship of 12 of
the letters in dispute

• Solved by Mosteller
and Wallace (1963)
using Bayesian
methods

Who	wrote	which	Federalist	papers?

Image: Tyler Feder (https://www.allfreepapercrafts.com/Free-Printables/Hamilton-Paper-Dolls)

https://www.allfreepapercrafts.com/Free-Printables/Hamilton-Paper-Dolls

Movie: is this review posi-ve or nega-ve?
Products: what do people think about the new iPhone?
Public sen1ment: how is consumer confidence?
Poli1cs: what do people think about this candidate or
issue?
Predic1on: predict elec-on outcomes or market trends
from sen-ment

Sentiment	Analysis

Sentiment analysis is the detection of a"tudes

Today we will simply ask:
✦ Is the attitude of this text positive or negative?

Sentiment	Analysis

DeCining	the	Text	
ClassiCication	Task

Input:
✦ a document d
✦ a fixed set of classes C = {c1, c2,…, cJ}

Output: a predicted class c ∈ C

Text	ClassiCication

✦ Rules based on combinations of words or other
features:

 negative: ! OR (“didn't” AND “like”)
✦ Accuracy can be high if the rules are carefully

refined by an expert
✦ But building and maintaining is expensive. Plus,

what happens when the new fight cloud emoji
gets added this year?

Text	ClassiCication:	Hard-Coded	Rules

Input:
✦ a document d
✦ a fixed set of classes C = {c1, c2,…, cJ}

✦ A training set of m labeled documents (d1,c1),....,(dm,cm)

Output:
✦ a learned classifier γ:d  c

Text	ClassiCication:	Supervised	Machine	Learning

There are many kinds of classifiers
✦ Naïve Bayes
✦ Logistic regression
✦ Neural networks
✦ k-Nearest Neighbors
✦ …

Supervised	Machine	Learning	ClassiCiers

Naive	Bayes	ClassiCiers

https://xkcd.com/2059/

"Naive" classification method based on Bayes rule:

Naive	Bayes	Intuition

Image: Jim Kulich (https://www.elmhurst.edu/blog/thomas-bayes)

https://www.elmhurst.edu/blog/thomas-bayes

A "naive" classification method based on Bayes
rule:

Naive	Bayes	Intuition

A "naive" classification method based on Bayes rule:

P(A|B) = P(B) P(B|A) / P(A)

P(label|features) = P(label) P(features|label)

Naive	Bayes	Intuition

A "naive" classification method based on Bayes
rule.

Usually used with a simplified
representation of a document
called a bag of words

Naive	Representation

Image: Khulood Nasher (https://khuloodnasher.medium.com/bag-of-words-e2969110843)

https://khuloodnasher.medium.com/bag-of-words-e2969110843

Bag	of	Words	Representation

Word	Counts	as	Features

γ()=c
seen 2
sweet 1
whimsical 1
recommend 1
happy 1

... ...

For a document d and a class c:

Bayes	Rule	Applied	to	Documents

P(c | d) = P(d | c)P(c)
P(d)

cMAP = argmax
c∈C

P(c | d)

= argmax
c∈C

P(d | c)P(c)
P(d)

= argmax
c∈C

P(d | c)P(c)

MAP is
“maximum a
posteriori” =
most likely
class

Bayes Rule

Dropping the
denominator

Naive	Bayes	ClassiCier

cMAP = argmax
c∈C

P(d | c)P(c)

= argmax
c∈C

P(x1, x2,…, xn | c)P(c)

Naive	Bayes	ClassiCier

cMAP = argmax
c∈C

P(d | c)P(c)

Document d
represented as
features x1..xn

= argmax
c∈C

P(x1, x2,…, xn | c)P(c)

"Likelihood" "Prior"

Naive	Bayes	ClassiCier

How often does
this class occur?

cMAP = argmax
c∈C

P(x1, x2,…, xn | c)P(c)

We can count
frequencies in a
corpus

Naive	Bayes	ClassiCier

cMAP = argmax
c∈C

P(x1, x2,…, xn | c)P(c)

O(|X|n•|C|) parameters

Could only be estimated if a
very, very large number of
training examples was available.

Naive	Bayes	ClassiCier

Multinomial	Naive	Bayes:	Assumptions
Bag of Words Assumption: Assume position
doesn’t matter

Bag of Words Assumption: Assume position
doesn’t matter
Conditional Independence: Assume the feature
probabilities P(xi|cj) are independent given the
class c.

Multinomial	Naive	Bayes:	Assumptions

P(x1,…, xn | c) = P(x1 | c)•P(x2 | c)•P(x3 | c)•...•P(xn | c)

cMAP = argmax
c∈C

P(x1, x2,…, xn | c)P(c)

cNB = argmax
c∈C

P(cj) P(x | c)
x∈X
∏

Multinomial	Naive	Bayes

cNB = argmax
cj∈C

P(cj) P(xi | cj)
i∈positions
∏

positions ← all word posi-ons in test document

Multinomial	Naive	Bayes

There's a problem with this:

Multiplying lots of probabilities can result in floating-point
underflow!

.0006 * .0007 * .0009 * .01 * .5 * .000008….

One	Issue

cNB = argmax
cj∈C

P(cj) P(xi | cj)
i∈positions
∏

Log	Fix

cNB = argmax
cj∈C

P(cj) P(xi | cj)
i∈positions
∏

There's a problem with this:

Multiplying lots of probabilities can result in floating-point
underflow!

.0006 * .0007 * .0009 * .01 * .5 * .000008….

Solution: Use logs, because log(ab) = log(a) + log(b)
We'll sum logs of probabilities instead of multiplying probabilities!

Instead of this:
cNB = argmax

cj∈C
P(cj) P(xi | cj)

i∈positions
∏

Multinomial	Naive	Bayes

Instead of this:

This:

Notes:
1) Taking log doesn't change the ranking of classes!
The class with highest probability also has highest log

probability!
2) It's a linear model:
Just a max of a sum of weights: a linear function of the inputs
So Naive Bayes is a linear classifier

cNB = argmax
cj∈C

P(cj) P(xi | cj)
i∈positions
∏

Multinomial	Naive	Bayes

Naive	Bayes	ClassiCication:	
Training	Phase

Sec.13.3

P̂(wi | cj) =
count(wi ,cj)
count(w,cj)

w∈V
∑

𝑃̂(𝑐𝑗) =
𝑁𝑐𝑗

𝑁𝑡𝑜𝑡𝑎𝑙

Learning	A	Multinomial	Naive	Bayes	Model
First attempt: maximum likelihood estimates.
Simply use the frequencies in the data!

✦ Create mega-document for topic j by
concatenating all docs in this topic.

✦ Use frequency of w in mega-document

Learning	A	Multinomial	Naive	Bayes	Model

P̂(wi | cj) =
count(wi ,cj)
count(w,cj)

w∈V
∑

✦ Create mega-document for topic j by
concatenating all docs in this topic.

✦ Use frequency of w in mega-document

P̂(wi | cj) =
count(wi ,cj)
count(w,cj)

w∈V
∑

Learning	A	Multinomial	Naive	Bayes	Model

fraction of times
word wi appears

among all words in
documents of topic cj

What if we have seen no training documents with the
word fantas'c and classified in the topic posi1ve
(thumbs-up)?

Problem	with	Maximum	Likelihood

P̂("fantastic" positive) = count("fantastic", positive)
count(w, positive

w∈V
∑)

 = 0

Sec.13.3

What if we have seen no training documents with
the word fantas'c and classified in the topic posi1ve
(thumbs-up)?

If we naively multiply, we will lose *all*
probability for this class!

Problem	with	Maximum	Likelihood

P̂("fantastic" positive) = count("fantastic", positive)
count(w, positive

w∈V
∑)

 = 0

Sec.13.3

cMAP = argmaxc P̂(c) P̂(xi | c)i∏

Solution:	Smoothing!

P̂(wi | c) =
count(wi ,c)
count(w,c)()

w∈V
∑

Laplace
(add-1)
smoothing for
Naive Bayes:

=
count(wi ,c)+1

count(w,c
w∈V
∑)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + V

Training	A	Multinomial	Naive	Bayes	ClassiCier
✦ Step 1: from training corpus, extract vocabulary V
✦ Step 2: Calculate priors
✦ Step 3: Calculate likelihoods

Calculating	Priors
Calculate priors:

✦ For each cj in C:

 docsj = n docs in class c

p(cj) = P(cj)←
| docsj |

| total # documents|

Calculating	Likelihoods
Calculate likelihoods:

✦ Textj = single doc containing all docsj

✦ For each word wk in V:

 nk = # of wk in Textj

 p(wk|cj) = P(wk | cj)←
nk +α

n+α |Vocabulary |

where = smoothing parameterα

What about unknown words: words that appear in
our test data but not in our training data or
vocabulary?
We ignore them:
✦ Remove them from the test document!
✦ Pretend they weren't there!
✦ Don't include any probability for them at all!
Why don't we build an unknown word model?
✦ Generally it doesn’t help to know which class has

more unknown words.

Unknown	Words

Sentiment	Analysis:	A	
Binary	Naive	Bayes	Example

Let’s work through a sentiment analysis example:

Sentiment	Analysis

Smoothed	Model
1. Priors from training:

2. Drop unknown words
 ("with")

3. Likelihoods from training:
4. Score test set:

Smoothed	Model
1. Priors from training:

2. Drop unknown words
 ("with")

3. Likelihoods from training:
4. Score test set:

For tasks like sentiment, word occurrence seems to
be more important than word frequency.

✦ The occurrence of the word fantas1c tells us a lot
✦ The fact that it occurs 5 times may not tell us

much more.

Binary Naive Bayes:
clip word counts at 1 to create binary features

Optimizing	for	Sentiment	Analysis

Can use features that track counts in sentiment
lexicons:
✦ Features represent "this word occurs in the posi1ve

lexicon" or "this word occurs in the nega1ve lexicon"
Now all positive words (good, great, beau1ful,
wonderful) or negative words count for that feature.
Using 1-2 features isn't as good as using all the words.
✦ But when training data is sparse or not

representative of the test set, supplementing with
lexicon features can help

Sentiment	Lexicons

Home page: https://mpqa.cs.pitt.edu/lexicons/
subj_lexicon/
6885 words from 8221 lemmas, annotated for intensity
(strong/weak)
✦ 2718 positive
✦ 4912 negative
+ : admirable, beau1ful, confident, dazzling, ecsta1c, favor, glee,
great
− : awful, bad, bias, catastrophe, cheat, deny, envious, foul,
harsh, hate

MPQA	Subjectivity	Cues	Lexicon

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann (2005). Recognizing Contextual
Polarity in
Phrase-Level Sentiment Analysis. Proc. of HLT-EMNLP-2005.

Riloff and Wiebe (2003). Learning extraction patterns for subjective expressions.
EMNLP-2003.

https://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
https://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
https://mpqa.cs.pitt.edu/lexicons/subj_lexicon/

