CS 333:

Natural Language Processing

Fall 2025

Prof. Carolyn Anderson Wellesley College

Reminders

- HW 4 will be released today
- Quiz 4 next Tuesday: J&M Chapter 5
- My next help hours: Monday 4-5:30 SHIFTED!
- My next help hours: Sunday 5-6

HW4

- Goal: build a Naive Bayes classifier to identify book genres using a dataset from Goodreads
- Last homework before Midterm 1!

HW 2 Curiosity Points

- Explorations of segmentation techniques for other languages
- Detailed analysis of errors
- Improvements to make the segmenter more robust
- Read research papers on other segmentation approaches
- Tested our programs on another corpus (emails I sent to the class)

Multinomial Naive Bayes

```
Simplifying Assumptions:
             - Bag-of-words
- Conditional independence of litel! Moods

(Features are independent of each other)

positions — all word positions in test document
                                                                                 like linuous
    c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} | c_{j})
c_{lass}
                                                               Feature S
       P(c|x) = P(c) \pi P(x;1c)
```

Calculating Priors

Calculate priors:

• For each c_i in C:

 $docs_i = n docs in class c$

$$p(c_j) = \frac{|\textit{docs}_j|}{|\textit{total # documents}|}$$

Calculating Likelihoods

Calculate likelihoods:

- → $Text_j$ = single doc containing all $docs_j$
- * For each word w_k in V:

$$n_k$$
 = # of w_k in $Text_j$

$$p(w_k \mid c_j) = \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$

where α = smoothing parameter

often: 6 = 1 to odd-I

Naive Bayes: Bigger Picture

Naive Bayes Limitations

I really like this movie

I really don't like this movie

Negation changes the meaning of "like" to negative.

Negation can also change negative to positive-ish

- Don't dismiss this film
- Doesn't let us get bored

https://miguelmota.com/blog/naive-bayes-classifier-in-javascript/demo/

Limitation: Negation

Simple baseline method:

Add NOT_ to every word between negation and following punctuation:

didn't like this movie , but I

didn't NOT_like NOT_this NOT_movie
but I

Das, Sanjiv and Mike Chen. 2001. Yahoo! for Amazon: Extracting market sentiment from stock message boards. In Proceedings of the Asia Pacific Finance Association Annual Conference (APFA). Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment Classification using Machine Learning Techniques. EMNLP-2002, 79—86.

Other Tasks: Spam Filtering

SpamAssassin Features:

- Mentions millions of (dollar) ((dollar) NN,NNN,NNN.NN)
- From: starts with many numbers
- Subject is all capitals
- HTML has a low ratio of text to image area
- "One hundred percent guaranteed"
- Claims you can be removed from the list

Other Tasks: Language ID

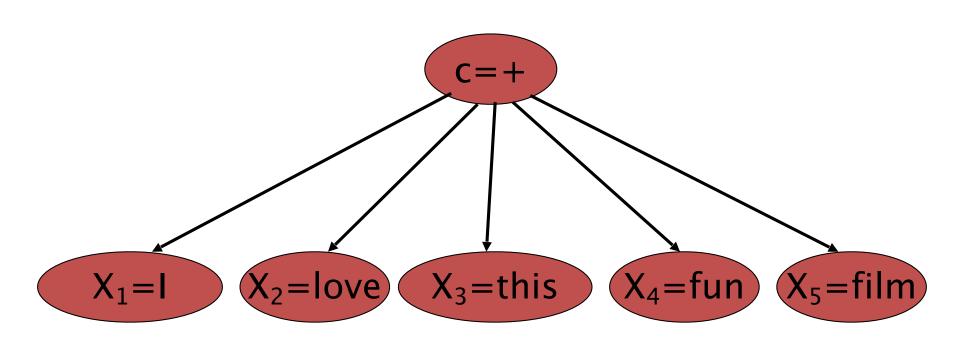
- Determining what language a piece of text is written in.
- Features based on character n-grams do very well
- Important to train on lots of varieties of each language (e.g., American English varieties like African-American English, or English varieties around the world like Indian English)

Naive Bayes Advantages

- Very Fast, low storage requirements
- Work wells with very small amounts of training data
- Robust to Irrelevant Features
 - Irrelevant Features cancel each other without affecting results
- Very good in domains with many equally important features
- Optimal if the independence assumptions hold
- A good dependable baseline for text classification
 - But we will see other classifiers that give better accuracy in practice

Relationship to Language Modeling

Generative Model for Naive Bayes



NB and and Language Modeling

Naive Bayes classifiers can use any sort of feature

URL, email address, dictionaries, network features

But if, as in the previous slides

- We use only word features
- we use all of the words in the text (not a subset)

Then

Naive Bayes can be viewed as a kind of language model.

Each class = unigram language model

Assigning each word:
$$P(wordlc)$$

Assigning each sentence: $P(slc) = TP(wordlc)$
 $P(slc) = TP(wordlc)$

O.1 $P(slc) = TP(wordlc)$

Each class = unigram language model

Assigning each word: P(word | c)

Assigning each sentence: $P(s \mid c) = \Pi P(word \mid c)$

Class pos

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

• • •

Each class = unigram language model

Which class assigns the higher probability to s?

Model pos		
0.1	1	
0.1	love	
0.01	this	
0.05	fun	
0.1	film	

Model neg		
0.2	1	
0.001	love	
0.01	this	
0.005	fun	
0.1	film	

$$\frac{1}{0.1} \quad \frac{\text{love this}}{0.1} \quad \frac{\text{fun film}}{0.05} \\
0.2 \quad 0.001 \quad 0.01 \quad 0.005 \quad 0.1$$

$$P(S|pos) > P(S|reg)$$

I< | RANDOM | NEXT >

Is IT CHRISTMAS?

*99.73% ACCURATE

https://xkcd.com/2236/

Consider a binary text classification task: Is this passage from a book a "smell experience" or not?

Towards Olfactory Information Extraction from Text: A Case Study on Detecting Smell Experiences in Novels

Ryan Brate and Paul Groth

University of Amsterdam Amsterdam, the Netherlands

r.brate@gmail.com
p.t.groth@uva.nl

Marieke van Erp

KNAW Humanities Cluster
Digital Humanities Lab
Amsterdam, the Netherlands

marieke.van.erp@dh.huc.knaw.nl

Abstract

Environmental factors determine the smells we perceive, but societal factors factors shape the importance, sentiment and biases we give to them. Descriptions of smells in text, or as we call them 'smell experiences', offer a window into these factors, but they must first be identified. To the best of our knowledge, no tool exists to extract references to smell experiences from text. In this paper, we present two variations on a semi-supervised approach to identify smell experiences in English literature. The combined set of patterns from both implementations offer significantly better performance than a keyword-based baseline.

Consider a binary text classification task:

Is this passage from a book a "smell experience" or not?

You build a "smell" detector

- Positive class: paragraph that involves a smell experience
- Negative class: all other paragraphs

Truth

	True Smell	No Small
Geas Smy	TP	FP
Gues No	FN	TN

Precision:

TP

TP+FP

Prediction

Why don't we use **accuracy** as our metric?

Imagine we saw 1 million paragraphs

- → 100 of them mention smells
- 999,900 talk about something else

We could build a classifier that labels every paragraph "not about smell"

Why Not Accuracy?

Why don't we use **accuracy** as our metric?

Imagine we saw 1 million paragraphs

- ◆ 100 of them mention smells
- 999,900 talk about something else

We could build a classifier that labels every paragraph "not about smell"

- ◆ It would get 99.99% accuracy!!!
- ◆ But the whole point of the classifier is to help literary scholars find passages about smell to study--- so this is useless!

That's why we use **precision** and **recall** instead

Evaluation: Precision

% of items the system detected (i.e., items the system labeled as positive) that are in fact positive (according to the human gold labels)

PRECISION =

Evaluation: Recall

% of items actually present in the input that were correctly identified by the system.

RECALL =

Why Precision and Recall

Our no-smells classifier

Labels nothing as "about smell"

Accuracy =
$$99.99\%$$

A Combined Measure

F measure: a single number that combines Precision and Recall:

$$F_{3} = \frac{(\beta^{2}+1)PR}{\beta^{2}P+R}$$

$$\beta = 1 \text{ is evenly belowed } PRR$$

$$F_{4} = \frac{2PR}{P+R}$$

A Combined Measure

F measure: a single number that combines Precision and Recall:

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

We almost always use balanced F_1 (i.e., $\beta = 1$):

$$F_1 = \frac{2PR}{P + R}$$

Evaluation with More Than Two Classes

Confusion Matrix for 3-class classification

		g	old labels	3	
		urgent	normal	spam	
	urgent	8	10	1	$\mathbf{precisionu} = \frac{8}{8+10+1}$
system output	normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
	spam	3	30	200	precision s= $\frac{200}{3+30+200}$
		recallu =	recalln=	recalls =	
		8	60	200	
		8+5+3	10+60+30	1+50+200	

How to combine P/R from 3 classes to get one metric?

Macroaveraging:

compute performance Metric per class le men overage over classes

Microaveraging:

collect decisions for all classes into one confusion motorix

compute P&R from the combined table

Macroaveraging and Microaveraging

Class 1: Urgent

true true urgent not system urgent system

8	11
8	340

$$precision = \frac{8}{8+11} = .42$$

not

	true	true
	normal	not
system normal	60	55
system not	40	212

precision =
$$\frac{60}{60+55}$$
 = .52

Class 2: Normal

true	true
normal	not
60	55
40	212

Class 3: Spam

true

	uuc	uuc
	spam	not
system spam	200	33
system not	51	83

true

precision =
$$\frac{8}{8+11}$$
 = .42 precision = $\frac{60}{60+55}$ = .52 precision = $\frac{200}{200+33}$ = .86

Macro averge: 0-42+0.52+0.86

Pooled

	true	true
	yes	no
system yes	268	99
system no	99	635

Statistical Significance Testing

How can we be sure that our results generalize?

Usually:

We care about how our system performs on data that is *similar* to the training data- not identical.

Development Test Sets and Cross-validation

Training set

Development Test Set

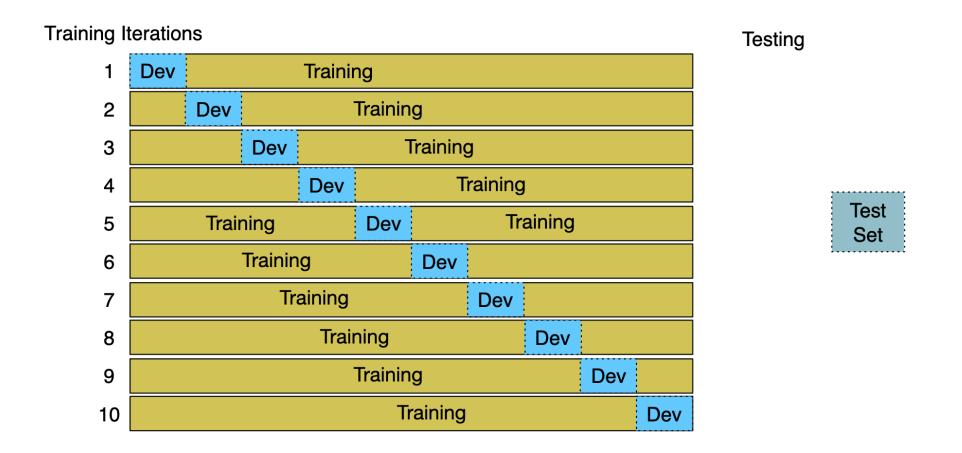
Test Set

Train on training set, tune on devset, report on testset

- This avoids overfitting ('training on test')
- More conservative estimate of performance
- But paradox: want as much data as possible for training, and as much for dev; how to split?

Cross-validation: multiple splits

Pool results over splits and compute pooled dev performance:



How to Check if Performance Difference is Reliable?

Given:

- Classifier A and B
- Metric M: M(A,x) is the performance of A on testset x
- * $\delta(x)$: the performance difference between A, B on x:

$$\delta(x) = M(A,x) - M(B,x)$$

• We want to know if $\delta(x)>0$, meaning A is better than B

How to Check if Performance Difference is Reliable?

Given:

- Classifier A and B
- Metric M: M(A,x) is the performance of A on testset x
- * $\delta(x)$: the performance difference between A, B on x:

$$\delta(x) = M(A,x) - M(B,x)$$

- We want to know if $\delta(x)>0$, meaning A is better than B
- $\delta(x)$ is called the **effect size**
- * Suppose we look and see that $\delta(x)$ is positive. Are we done?

Consider two hypotheses:

- Null hypothesis: A isn't better than B
- * A is better than B

We want to rule out H_0 $H_0: \delta(x) \leq 0$

 $H_1: \delta(x) > 0$

Consider two hypotheses:

- Null hypothesis: A isn't better than B
- A is better than B

We want to rule out H_0 $H_0: \delta(x) \leq 0$

 $H_1: \delta(x) > 0$

We create a random variable X ranging over test sets and ask, among all these test sets, how likely are we to see $\delta(x)$ if H_0 is true?

Consider two hypotheses:

- Null hypothesis: A isn't better than B
- A is better than B

We want to rule out H_0 $H_0: \delta(x) \leq 0$

 $H_1: \delta(x) > 0$

We create a random variable X ranging over test sets and ask, among all these test sets, how likely are we to see $\delta(x)$ if H_0 is true?

Formalized as the p-value: $P(\delta(X) \ge \delta(x)|H_0$ is true)

- In our example, this p-value is the probability that we would see $\delta(x)$ assuming H_0 (=A is not better than B).
 - If H_0 is true but $\delta(x)$ is huge, that is surprising! Very low probability!
- * A small p-value means that the difference we observed is unlikely under the null hypothesis. We fail to find support for the null hypothesis.

- In our example, this p-value is the probability that we would see $\delta(x)$ assuming H_0 (=A is not better than B).
 - If H_0 is true but $\delta(x)$ is huge, that is surprising! Very low probability!
- * A small p-value means that the difference we observed is unlikely under the null hypothesis. We fail to find support for the null hypothesis.
- Conventionally, very small means p < 0.05 or 0.01

- In our example, this p-value is the probability that we would see $\delta(x)$ assuming H_0 (=A is not better than B).
 - If H_0 is true but $\delta(x)$ is huge, that is surprising! Very low probability!
- A small p-value means that the difference we observed is unlikely under the null hypothesis. We fail to find support for the null hypothesis.
- ◆ Conventionally, very small means p < 0.05 or 0.01</p>
- A result(e.g., "A is better than B") is **statistically significant** if the δ we saw has a probability that is below the threshold and we therefore reject this null hypothesis.

- How do we compute this probability?
- In NLP, we don't tend to use parametric tests (like ttests)
- Instead, we use non-parametric tests based on sampling: artificially creating many versions of the setup.
- For example, suppose we had created zillions of test sets x'.

- How do we compute this probability?
- In NLP, we don't tend to use parametric tests (like t-tests)
- Instead, we use non-parametric tests based on sampling: artificially creating many versions of the setup.
- ◆ For example, suppose we had created zillions of test sets x'.
 - Now we measure the value of $\delta(x')$ on each test set
 - That gives us a distribution
 - Now set a threshold (say .01).
- * So if we see that in 99% of the test sets $\delta(x) > \delta(x')$, we can conclude that our original test set delta was a real delta and not an artifact.

Two common approaches:

- approximate randomization
- bootstrap test

Paired tests:

- Comparing two sets of observations in which each observation in one set can be paired with an observation in another.
- For example, when looking at systems A and B on the same test set, we can compare the performance of system A and B on each same observation x_i

Efron and Tibshirani, 1993

Can apply to any metric (accuracy, precision, recall, F1).

Bootstrap means to repeatedly draw large numbers of smaller samples with replacement (called bootstrap samples) from an original larger sample.

Consider a baby text classification example with a test set x of 10 documents, using accuracy as metric.

Here are the results of systems A and B on x. There are 4 outcomes (A & B both right, A & B both wrong, A right/B wrong, A wrong/B right):

1 2 3 4 5 6 7 8 9 10 A% B% d()
AB AB AB AB AB AB AB AB AB O.7 0.5 0.2

Now we create, many, say, b=10,000 virtual test sets x(i), each of size n = 10.

To make each x(i), we randomly select a cell from row x, with replacement, 10 times:

1	2	3	4	5	6	7	8	9	10	A% B% d()
AB	0.7 0.5 0.2									
AB	0.6 0.6 0.0									
AB	0.6 0.7 -0.1									

We have a distribution! We check how often A has an **accidental** advantage, to see if the original $\delta(x)$ we saw was very common. If H_0 is true, we expect $\delta(x')=0$.

We have a distribution! We check how often A has an **accidental** advantage, to see if the original $\delta(x)$ we saw was very common. If H_0 is true, we expect $\delta(x')=0$.

So we just count how many times the $\delta(x')$ we found exceeds the expected 0 value by $\delta(x)$ or more:

p-value(x) =
$$\frac{1}{b} \sum_{i=1}^{b} \mathbb{1} \left(\delta(x^{(i)}) - \delta(x) \ge 0 \right)$$

Alas, it's slightly more complicated.

We didn't draw these samples from a distribution with 0 mean; we created them from the original test set x. What's the issue?

Alas, it's slightly more complicated.

We didn't draw these samples from a distribution with 0 mean; we created them from the original test set x, which is **biased** (by .20) in favor of A.

To measure how surprising our observed $\delta(x)$ is, we compute the p-value by counting how often $\delta(x')$ exceeds the expected value of $\delta(x)$ by $\delta(x)$ or more:

Alas, it's slightly more complicated.

We didn't draw these samples from a distribution with 0 mean; we created them from the original test set x, which is **biased** (by .20) in favor of A.

To measure how surprising our observed $\delta(x)$ is, we compute the p-value by counting how often $\delta(x')$ exceeds the expected value of $\delta(x)$ by $\delta(x)$ or more:

p-value
$$(x) = \frac{1}{b} \sum_{i=1}^{b} \mathbb{1} \left(\delta(x^{(i)}) - \delta(x) \ge \delta(x) \right)$$
$$= \frac{1}{b} \sum_{i=1}^{b} \mathbb{1} \left(\delta(x^{(i)}) \ge 2\delta(x) \right)$$

- We have 10,000 test sets x(i) and a threshold of .01
- ↑ In 47 of the test sets we find that $\delta(x(i)) \ge 2\delta(x)$

- We have 10,000 test sets x(i) and a threshold of .01
- ↑ In 47 of the test sets we find that $\delta(x(i)) \ge 2\delta(x)$
- The resulting p-value is .0047

- We have 10,000 test sets x(i) and a threshold of .01
- ↑ In 47 of the test sets we find that $\delta(x(i)) \ge 2\delta(x)$
- The resulting p-value is .0047
- This is smaller than .01, indicating δ (x) is indeed sufficiently surprising

- We have 10,000 test sets x(i) and a threshold of .01
- ♦ In 47 of the test sets we find that $\delta(x(i)) \ge 2\delta(x)$
- ◆ The resulting p-value is .0047
- * This is smaller than .01, indicating δ (x) is indeed sufficiently surprising
- ◆ We reject the null hypothesis and conclude *A* is better than *B*.

Avoiding Harms in Classification

Harms in Sentiment Analysis

Kiritchenko and Mohammad (2018) found that most sentiment classifiers assign lower sentiment and more negative emotion to sentences with African American names in them.

This perpetuates negative stereotypes that associate African Americans with negative emotions

Harms in Toxicity Detection

Toxicity detection is the task of detecting hate speech, abuse, harassment, or other kinds of toxic language But some toxicity classifiers incorrectly flag as being toxic sentences that are non-toxic but simply mention identities like blind people, women, or gay people. This could lead to censorship of discussion about these groups.

Harms in Classification

Can be caused by:

- Problems in the training data; machine learning systems are known to amplify the biases in their training data.
- Problems in the human labels
- Problems in the resources used (like lexicons)
- Problems in model architecture (like what the model is trained to optimized)

Mitigation of these harms is an open research area