
Homework 2: Tokenization
Due Sept. 21 at 10pm

1 Tokenization and Word Frequencies (35 points)
Put all of your code for this part in tokenizer.py.

Along with some of the functions we wrote in class, the starter code has an empty main function
that you should fill in with code to demonstrate how your functions work.

You should call your main function using the following pattern:

if __name__ == "__main__":
main()

This pattern will be useful for you as you develop more complex python programs. It allows you to
write functions that will can be imported into other programs while still having your tokenizer.py
be runnable as a stand-alone program.

1.1 Project Gutenberg
We will continue exploring files from Project Gutenberg. Start by reading in Lewis Carroll’s Al-
ice’s Adventures in Wonderland, which is stored in the file carroll-alice.txt. Use the words_by_frequency
and count_words functions we wrote in class to explore the text. You should find that the five most
frequent words in the text are:

the 1603
and 766
to 706
a 614
she 518

For this entire assignment, we will lowercase when getting a list of words.

The word ‘alice’ actually appears 398 times in the text, though this is not the answer you got for
the previous question. Why? Examine the data to see if you can figure it out before continuing.

1.2 Punctuation (10 points)
There is a deficiency in how we implemented the get_words function! When we calculate word
frequencies, we probably don’t care whether the word was adjacent to a punctuation mark. For
example, the word ‘hatter’ appears in the text 57 times, but our count_words Counter says it
appears only 24 times. Because it sometimes appears next to a punctuation mark, those instances
are being counted separately:

1

https://www.gutenberg.org


>>> word_freq = words_by_frequency(words)
>>> for (word, freq) in word_freq:
... if "hatter" in word:
... print(f"{word} {freq}")
...
hatter 24
hatter. 13
hatter, 10
hatter: 6
hatters 1
hatter’s 1
hatter; 1
hatter.’ 1

Our get_words function would be better if it separated punctuation from words. We can accom-
plish this by using the re.split function. Be sure to import re at the top of your file to make
re.split() work. Below is a small example that demonstrates how str.split works on a small text
and compares it to using re.split:

>>> text = ’"Oh no, no," said the little Fly, "to ask me is in vain."’
>>> text.split()
[’"Oh’, ’no,’, ’no,"’, ’said’, ’the’, ’little’, ’Fly,’, ’"to’, ’ask’, ’me’, ’is’,
’in’, ’vain."’]
>>> re.split(r’(\W)’, text)
[’’, ’"’, ’Oh’, ’ ’, ’no’, ’,’, ’’, ’ ’, ’no’, ’,’, ’’, ’"’, ’’, ’ ’, ’said’, ’ ’, ’the’,
’ ’, ’little’, ’ ’, ’Fly’, ’,’, ’’, ’ ’, ’’, ’"’, ’to’, ’ ’, ’ask’, ’ ’, ’me’, ’ ’, ’is’,
’ ’, ’in’, ’ ’, ’vain’, ’.’, ’’, ’"’, ’’]

Note that this is not exactly what we want, but it is a lot closer.

Using the above example as a guide, write and test a function called tokenize that takes a string as
an input and returns a list of words and punctuation, but not extraneous spaces and empty strings.

Like get_words, tokenize should take an optional argument do_lower that defaults to False to
determine whether the string should be case normalized before separating the words. You don’t
need to modify the re.split() line: just remove the empty strings and spaces.

>>> tokenize(text, do_lower=True)
[’"’, ’oh’, ’no’, ’,’, ’no’, ’,’, ’"’, ’said’, ’the’, ’little’,
’fly’, ’,’, ’"’, ’to’, ’ask’, ’me’, ’is’, ’in’, ’vain’, ’.’, ’"’]
>>> print(’ ’.join(tokenize(text, do_lower=True)))
" oh no , no , " said the little fly , " to ask me is in vain . "

Checking In

Use your tokenize function in conjunction with your count_words function to list the top 5 most
frequent words in carroll-alice.txt. You should get this:

’ 2871 <-- single quote

2



, 2418 <-- comma
the 1642
. 988 <-- period
and 872

1.3 Getting words (10 points)
Write a function called filter_nonwords that takes a list of strings as input and returns a new
list of strings that excludes anything that isn’t entirely alphabetic. Use the str.isalpha() method to
determine if a string is comprised of only alphabetic characters.

>>> text = ’"Oh no, no," said the little Fly, "to ask me is in vain."’
>>> tokens = tokenize(text, do_lower=True)
>>> filter_nonwords(tokens)
[’oh’, ’no’, ’no’, ’said’, ’the’, ’little’, ’fly’, ’to’, ’ask’, ’me’,
’is’, ’in’, ’vain’]

Checking In

Use this function to list the top 5 most frequent words in carroll-alice.txt. Confirm that you get
the following before moving on:

the 1642
and 872
to 729
a 632
it 595

1.4 Most frequent words (5 points)
Iterate through all of the files in the gutenberg data directory and print out the top 5 words for each.
To get a list of all the files in a directory, use the os.listdir function:

import os
directory = "gutenberg_data"
files = os.listdir(directory)
infile = open(os.path.join(directory, files[0]), ’r’, encoding=’latin1’)

This example also uses the function os.path.join that you might want to read about.

Note: This open function uses the optional encoding argument to tell Python that the source file
is encoded as latin1. Be sure to use this encoding flag to read the files in the Gutenberg corpus!

1.5 Token Analysis Questions (10 pts)
Answer the following questions in your assignment writeup, which should be ubmitted as a PDF
on Gradescope along with your Python files.

3



1. Most Frequent Word: Loop through all the files the gutenberg data directory that end in
.txt. Is ‘the’ always the most common word? If not, what are some other words that show up
as the most frequent word?

2. Impact of Lowercasing: If you don’t lowercase all the words before you count them, how
does this result change, if at all?

3. Impact of Removing Punctuation: Regenerate the frequency graps we looked at in class.
How does removing punctuation affect the trends we discussed?

2 Sentence Segmentation (65 points)
In this next part of the lab, you will write a simple sentence segmenter.

The brown_data directory includes three text files taken from the Brown Corpus:

• editorial.txt
• fiction.txt
• lore.txt

The files do not indicate where one sentence ends and the next begins. In the data set you are work-
ing with, sentences can only end with one of 5 characters: period, colon, semi-colon, exclamation
point and question mark.

However, there is a catch: not every period represents the end of a sentence. There are many
abbreviations (‘U.S.A.’, ‘Dr.’, ‘Mon.’, ‘etc.’, etc.) that can appear in the middle of a sentence where
the periods do not indicate the end of a sentence. There are also many examples where colon is not
the end of the sentence. The other three punctuation marks are all nearly unambiguously the ends
of a sentence (yes, even semi-colons).

For each of the above files, there is also a file containing the line number (counting from 0) con-
taining the actual locations of the ends of sentences:

• editorial-eos.txt
• fiction-eos.txt
• lore-eos.txt

Your job is to write a sentence segmenter, and to output the predicted token number of each sen-
tence boundary. You should write your code in segmenter.py and submit this to Gradescope.

2.1 Getting Started
The given segmenter.py has some starter code, and can be run from the command line. When it’s
called from the command line, it takes one required argument and two optional arguments:

$ python3 ./segmenter.py --help
usage: segmenter.py [-h] --textfile FILE [--hypothesis_file FILE]

Sentence Segmenter for NLP Lab

optional arguments:

4

https://en.wikipedia.org/wiki/Brown_Corpus


-h, --help show this help message and exit
--textfile FILE, -t FILE Unlabeled text is in FILE.
--hypothesis_file FILE, -y FILE Write hypothesized boundaries to FILE

Make sure you understand how this code uses the argparse module to process command-line
arguments. (You may find the argparse documentation useful.)

The most confusing part of this is often seeing that argparse is able to open files directly: for in-
stance, the ‘–textfile‘ argument given in the segmenter code includes the type argparse.FileType(‘r’),
implying that among the resulting parsed arguments, args, you will be able to access a pointer to
the text file in "read" mode using args.textfile. Since this file is already open, you should not
call open() on it.

All print statements should be in your main() function, which should only be called if seg-
menter.py is run from the command line.

The segmenter.py starter code imports the tokenize function from the last section.

Checking In

Confirm that you can open the file ‘brown.editorial.txt’, and that your code from the previous part
splits it into 63,333 tokens.

Note: Do not filter out punctuation— these tokens will be exactly the ones we want to consider as
potential sentence boundaries!

2.2 Baseline Segmenter (15 points)
The starter code contains a function called baseline_segmenter that takes a list of tokens as its
only argument. It returns a list of tokenized sentences; that is, a list of lists of words, with one list
per sentence.

>>> baseline_segmenter(tokenize(’I am Sam. Sam I am.’)

[[’I’, ’am’, ’Sam’, ’.’], [’Sam’, ’I’, ’am’, ’.’]]

Remember that every sentence in our data set ends with one of the five tokens ‘[’.’, ’:’, ’;’, ’!’,
’?’]‘. Since it’s a baseline approach, baseline_segmenter predicts that every instance of one of
these characters is the end of a sentence.

Fill in the function write_sentence_boundaries. This function takes two arguments: a list of lists
of strings (like the one returned by baseline_segmenter) and a writeable pointer to either an open
file or stdout. You will need to loop through all of the sentencess in the document. For each
sentence, you will want to write the index of the last word in the sentence to the filepointer.

Checking In

Confirm that when you run baseline_segmenter on the file editorial.txt, it predicts 3278 sentence
boundaries, and that the first five predicted boundaries are at tokens 22, 54, 74, 99, and 131.

5

https://docs.python.org/3/howto/argparse.html


2.3 Evaluating the Segmenter
To evaluate your system, I am providing you a program called evaluate.py that compares your
hypothesized sentence boundaries with the ground truth boundaries. This program will report to
you the true positives, true negatives, false positives and false negatives, along with some other
metrics (precision, recall, F-measure), which may be new to you. You can run evaluate.py with
the -h option to see all of the command-line options that it supports.

A sample run with the output of your baseline segmenter from above stored in editorial.hyp would
be:

python3 evaluate.py -d brown -c editorial -y editorial.hyp

Run the evaluation on the baseline system’s output for the editorial category, and confirm that you
get the following before moving on:

TP: 2719 FN: 0
FP: 559 TN: 60055

PRECISION: 82.95% RECALL: 100.00% F: 90.68%

(A quick aside: this is a good case for why we like to think about F1 score to help reason about
acceptable tradeoffs of precision and recall. If only 25% of the punctuation marks we retrieve were
true sentence boundaries, we would get recall of 100% still, precision of 25%, and an F1 of 40%:
much lower than the arithmetic average of 62.5% we would get from precision and recall. The
further either precision or recall gets from 1, the more it affects the F1 score.)

2.4 Improving the Segmenter (30 points)
Now it’s time to improve the baseline sentence segmenter. We don’t have any false negatives (since
we’re predicting that every instance of the possibly-end-of-sentence punctuation marks is, in fact,
the end of a sentence), but we have quite a few false positives.

There’s a placeholder for a second segmentation function defined in the starter code. You will fill in
that my_best_segmenter function to do a (hopefully!) better job identifying sentence boundaries.

You can see the type of tokens that your system is mis-characterizing by setting the verbosity of
evaluate.py to something greater than 0. Setting it to 1 will print out all of the false positives and
false negatives so you can work to improve your my_best_segmenter function.

To test your segmenter, I will run it on a hidden text you haven’t seen yet. It may not make sense
for you to spend a lot of time trying to fix obscure cases that show up in the three texts I am
providing you because these cases may never show up in the hidden text that you haven’t seen. But
it is important to handle cases that occur multiple times and even some cases that appear only once
if you suspect they could appear in the hidden text. You want to write your code to be as general
as possible so that it works well on the hidden text without leading to too many false positives.

6



2.5 Segmentation Questions (10 points)
Answer the following questions in your assignment writeup and submit as a PDF on Gradescope:

1. Describe (using the metrics from the evaluation script) the performance of your final seg-
menter.

2. Describe at least 3 things that your final segmenter does better than the baseline segmenter.
What are you most proud of in your segmenter? Include specific examples that are handled
well.

3. Describe at least 3 places where your segmenter still makes mistakes. Include specific ex-
amples where your segmenter makes the wrong decision. If you had another week to work
on this, what would you add? If you had the rest of the semester to work on it, what would
you do?

2.6 Curiosity
As usual, you will receive 90 points for implementing everything described above. To increase
your score further, you can extend your segmenter in some way, investigate some of your findings
more closely, or demonstrate intellectual curiosity in some other way.

3 Submission
Submit your tokenizer.py and segmenter.py files on Gradescope, along with your assignment
writeup.

7


	Tokenization and Word Frequencies (35 points)
	Project Gutenberg
	Punctuation (10 points)
	Getting words (10 points)
	Most frequent words (5 points)
	Token Analysis Questions (10 pts)

	Sentence Segmentation (65 points)
	Getting Started
	Baseline Segmenter (15 points)
	Evaluating the Segmenter
	Improving the Segmenter (30 points)
	Segmentation Questions (10 points)
	Curiosity

	Submission

