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Classification in logistic regression: summary

Given: 
◦ a set of classes:  (+ sentiment,- sentiment) 
◦ a vector x of features [x1, x2, …, xn] 

◦ x1= count( "awesome") 

◦ x2 = log(number of words in review) 

◦ A vector w of weights  [w1, w2, …, wn] 
◦ wi  for each feature fi
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The two phases of logistic regression 

Training: we learn weights w and b using stochastic 
gradient descent and cross-entropy loss.  

Test: Given a test example x we compute p(y|x) 
using learned weights w and b, and return 
whichever label (y = 1 or y = 0) is higher probability

learning algorithm metric



How	Does	Learning	Work?



Learning in Supervised Classification

Supervised classification:  
• We know the correct label y (either 0 or 1) for each x.  
• But what the system produces is an estimate,  
We want to set w and b to minimize the distance between 
our estimate (i) and the true y(i).  
• We need a distance estimator: a loss function or a cost 

function 
• We need an optimization algorithm to update w and b to 

minimize the loss.
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Learning components

A loss function: 

An optimization algorithm:

cross entropy loss
negative log likelihood oss

m

stochastic gradient descent

w Q usedinterchangeably to denote

weights learned parameters



The distance between and y!̂ 
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Intuition of negative log likelihood loss 
 = cross-entropy loss

A case of conditional maximum likelihood 
estimation  
We choose the parameters w,b that maximize 
• the log probability  
• of the true y labels in the training data  
• given the observations x 
 



Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)  

Since there are only 2 discrete outcomes (0 or 1) we can 
express the probability p(y|x) from our classifier as: 
  

maximize ply in Jt1i mating.o
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Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) 

Maximize: j Ii g
s
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Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)  
Minimize the cross-entropy loss 

Minimize: logpry lx

Cylogg t fl y log l y
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Does this work for our sentiment example?

We want loss to be: 
• smaller if the model estimate is close to correct 
• bigger if model is confused 

Let's first suppose the true label of this is y=1 (positive)
It's hokey . There are virtually no surprises , and the writing is 
second-rate . So why was it so enjoyable ? For one thing , the cast 
is great . Another nice touch is the music . I was overcome with 
the urge to get off the couch and start dancing . It sucked me in , 
and it'll do the same to you . 



Let's see if this works for our sentiment example

True value is y=1.  How well is our model doing? 
we 2.5 5 4.20.5 20.77 6 0.1
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Let's see if this works for our sentiment example

True value is y=1.  How well is our model doing? 

Pretty well!  What's the loss?

0.7

Cylogg t fi y logfi j
Cylog0.7 l y log 1 0.7

1 log60.7 11 09110771
log10.7 0.38



What if the true label was 0?



What if the true label was 0?

0.7
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The loss when model was right (if true y=1)  

Is lower than the loss when model was wrong (if true y=0): 



Stochastic	Gradient	
Descent

Slides borrowed from Jurafsky & Martin Edition 3



Our goal: minimize the loss

Let's make explicit that the loss function is 
parameterized by weights "=(w,b) 

We’ll represent as f (x; θ ) to make the dependence 
on θ more obvious 
We want the weights that minimize the loss, averaged 
over all examples: 
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Intuition of gradient descent
How do I get to the bottom of this river 
canyon?

x
Look around me 360∘ 
Find the direction of 
steepest slope down 
Go that way



Our goal: minimize the loss
For logistic regression, loss function is convex 
• A convex function has just one minimum 
• Gradient descent starting from any point is 

guaranteed to find the minimum 
• (Loss for neural networks is non-convex) 

 



Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

(goal)

Should we move
 right or left from here?

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function 

we contrpositive



Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

slope of loss at w1 
is negative

(goal)

one step
of gradient

descent

So we'll move positive

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function 
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Gradients
The gradient of a function of many variables 
is a vector pointing in the direction of the 
greatest increase in a function.  

Gradient Descent: Find the gradient of the 
loss function at the current point and move 
in the opposite direction. 



How much do we move in that direction ?

• The value of the gradient (slope in our 
example)   weighted by a 
learning rate η  

• Higher learning rate means that we 
make bigger adjustments to the weights
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Now let's consider N dimensions

We want to know where in the N-
dimensional space (of the N parameters that 
make up θ ) we should move.  
The gradient is just such a vector; it expresses 
the directional components of the sharpest 
slope along each of the N dimensions. 



Imagine 2 dimensions, w and b

Visualizing the 
gradient vector 
at the red point 
It has two 
dimensions 
shown in the x-
y plane



predict



Hyperparameters
The learning rate η is a hyperparameter 
◦ too high: the learner will take big steps and overshoot 
◦ too low: the learner will take too long 

Hyperparameters: 
• Briefly, a special kind of parameter for an ML model 
• Instead of being learned by algorithm from 

supervision (like regular parameters), they are 
chosen by algorithm designer.



How much do we move in that direction ?

• The value of the gradient (slope in our 
example)   weighted by a 
learning rate η  

• Higher learning rate means that we 
make bigger adjustments to the weights
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Partial Derivative for Logistic Regression
Cross-Entropy 

Loss

Weight Update

Derivative 
of Loss
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Partial Derivative for Logistic Regression
Cross-Entropy Loss

Weight Update

Derivative of Cross-Entropy Loss
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Deriving cross-entropy loss for multi-label classification

Goal: maximize probability of the correct label p(y|x)  

  



Overfitting
A model that perfectly match the training data 
has a problem. 
It will also overfit to the data, modeling noise  
◦ A random word that perfectly predicts y (it happens 

to only occur in one class) will get a very high weight.  
◦ Failing to generalize to a test set without this word.  

A good model should be able to generalize



Overfitting

This movie drew me 
in, and it'll do the 
same to you.

48

X1 = "this"
X2 = "movie
X3 = "hated"

I can't tell you how 
much I hated this 
movie. It sucked.

X5 = "the same to you"
X7 = "tell you how much"

X4 = "drew me in"

+

-

Useful or harmless features

"Memorizing" the training data can cause problems



Overfitting
4-gram model on tiny data will just memorize the data 
◦ 100% accuracy on the training set 

But it will be surprised by the novel 4-grams in the test data 
◦ Low accuracy on test set 

Models that are too powerful can overfit the data 
◦ Fitting the details of the training data so exactly that the 

model doesn't generalize well to the test set 
◦ How to avoid overfitting? 
◦ Regularization in logistic regression  
◦ Dropout in neural networks
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Game



www.i-am.ai/gradient-descent.html


