
Regression

Classification in logistic regression: summary

Given:
◦ a set of classes: (+ sentiment,- sentiment)
◦ a vector x of features [x1, x2, …, xn]

◦ x1= count("awesome")

◦ x2 = log(number of words in review)

◦ A vector w of weights [w1, w2, …, wn]
◦ wi for each feature fi

I per
class if

morethan
I 2 chase

software it more than 2

classes

The two phases of logistic regression

Training: we learn weights w and b using stochastic
gradient descent and cross-entropy loss.

Test: Given a test example x we compute p(y|x)
using learned weights w and b, and return
whichever label (y = 1 or y = 0) is higher probability

learning algorithm metric

How	Does	Learning	Work?

Learning in Supervised Classification

Supervised classification:
• We know the correct label y (either 0 or 1) for each x.
• But what the system produces is an estimate,
We want to set w and b to minimize the distance between
our estimate (i) and the true y(i).
• We need a distance estimator: a loss function or a cost

function
• We need an optimization algorithm to update w and b to

minimize the loss.

!̂

!̂

5

Learning components

A loss function:

An optimization algorithm:

cross entropy loss
negative log likelihood oss

m

stochastic gradient descent

w Q usedinterchangeably to denote

weights learned parameters

The distance between and y!̂

y our classifier guess between 041

y the datapoint's actual label

theclass the doc actually belongs to
Leith O or 1

Joy how far off is a model

loss from foe true label

Intuition of negative log likelihood loss
 = cross-entropy loss

A case of conditional maximum likelihood
estimation
We choose the parameters w,b that maximize
• the log probability
• of the true y labels in the training data
• given the observations x

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can
express the probability p(y|x) from our classifier as:

maximize ply in Jt1i mating.o

Note yet this simplifies J

Y O this simplifies to f y

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize: j Ii g
s

log pry x log 5 re g y

y logged g log ly

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Minimize the cross-entropy loss

Minimize: logpry lx

Cylogg t fl y log l y

LCEGuy ylogoCoxto Cl y log 1 ofwxtb

Does this work for our sentiment example?

We want loss to be:
• smaller if the model estimate is close to correct
• bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)
It's hokey . There are virtually no surprises , and the writing is
second-rate . So why was it so enjoyable ? For one thing , the cast
is great . Another nice touch is the music . I was overcome with
the urge to get off the couch and start dancing . It sucked me in ,
and it'll do the same to you .

Let's see if this works for our sentiment example

True value is y=1. How well is our model doing?
we 2.5 5 4.20.5 20.77 6 0.1
8 83,201,310,41197

oCwxt6

GCW X 10.1

660.833
0.70

Let's see if this works for our sentiment example

True value is y=1. How well is our model doing?

Pretty well! What's the loss?

0.7

Cylogg t fi y logfi j
Cylog0.7 l y log 1 0.7

1 log60.7 11 09110771
log10.7 0.38

What if the true label was 0?

What if the true label was 0?

0.7

pl lx
I piti x
0.3

Cylogofwxtb l y log 1 ofwxtb
O log j t 61 O log 1 0.7
log10.3
I 3

The loss when model was right (if true y=1)

Is lower than the loss when model was wrong (if true y=0):

Stochastic	Gradient	
Descent

Slides borrowed from Jurafsky & Martin Edition 3

Our goal: minimize the loss

Let's make explicit that the loss function is
parameterized by weights "=(w,b)

We’ll represent as f (x; θ) to make the dependence
on θ more obvious
We want the weights that minimize the loss, averaged
over all examples:

!̂
imply to a model's parameters

model'sguess

argmin MI EI Lee fix O grid

0 T T
m length ofdataset input gift Iff

Intuition of gradient descent
How do I get to the bottom of this river
canyon?

x
Look around me 360∘
Find the direction of
steepest slope down
Go that way

Our goal: minimize the loss
For logistic regression, loss function is convex
• A convex function has just one minimum
• Gradient descent starting from any point is

guaranteed to find the minimum
• (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

(goal)

Should we move
 right or left from here?

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

we contrpositive

Let's first visualize for a single scalar w

w

Loss

0
w1 wmin

slope of loss at w1
is negative

(goal)

one step
of gradient

descent

So we'll move positive

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

W 5
W G W If

O

Gradients
The gradient of a function of many variables
is a vector pointing in the direction of the
greatest increase in a function.

Gradient Descent: Find the gradient of the
loss function at the current point and move
in the opposite direction.

How much do we move in that direction ?

• The value of the gradient (slope in our
example) weighted by a
learning rate η

• Higher learning rate means that we
make bigger adjustments to the weights

"
"#

$(%(&; #), !)

hyperparameter

T ifonly weknew this

portioneight

Now let's consider N dimensions

We want to know where in the N-
dimensional space (of the N parameters that
make up θ) we should move.
The gradient is just such a vector; it expresses
the directional components of the sharpest
slope along each of the N dimensions.

Imagine 2 dimensions, w and b

Visualizing the
gradient vector
at the red point
It has two
dimensions
shown in the x-
y plane

predict

Hyperparameters
The learning rate η is a hyperparameter
◦ too high: the learner will take big steps and overshoot
◦ too low: the learner will take too long

Hyperparameters:
• Briefly, a special kind of parameter for an ML model
• Instead of being learned by algorithm from

supervision (like regular parameters), they are
chosen by algorithm designer.

How much do we move in that direction ?

• The value of the gradient (slope in our
example) weighted by a
learning rate η

• Higher learning rate means that we
make bigger adjustments to the weights

"
"#

$(%(&; #), !)

Partial Derivative for Logistic Regression
Cross-Entropy

Loss

Weight Update

Derivative
of Loss

=
Text

ChainRule If off
FROCKS

É
Iwao É si w.dkwD

Derivativeof 64
8 23 01.311 063

Derivative of Inn It I
Colnett y x

Partial Derivative for Logistic Regression
Cross-Entropy Loss

Weight Update

Derivative of Cross-Entropy Loss
5

Deriving cross-entropy loss for multi-label classification

Goal: maximize probability of the correct label p(y|x)

Overfitting
A model that perfectly match the training data
has a problem.
It will also overfit to the data, modeling noise
◦ A random word that perfectly predicts y (it happens

to only occur in one class) will get a very high weight.
◦ Failing to generalize to a test set without this word.

A good model should be able to generalize

Overfitting

This movie drew me
in, and it'll do the
same to you.

48

X1 = "this"
X2 = "movie
X3 = "hated"

I can't tell you how
much I hated this
movie. It sucked.

X5 = "the same to you"
X7 = "tell you how much"

X4 = "drew me in"

+

-

Useful or harmless features

"Memorizing" the training data can cause problems

Overfitting
4-gram model on tiny data will just memorize the data
◦ 100% accuracy on the training set

But it will be surprised by the novel 4-grams in the test data
◦ Low accuracy on test set

Models that are too powerful can overfit the data
◦ Fitting the details of the training data so exactly that the

model doesn't generalize well to the test set
◦ How to avoid overfitting?
◦ Regularization in logistic regression
◦ Dropout in neural networks

49

Game

www.i-am.ai/gradient-descent.html

