Regression

Classification in logistic regression: summary

Given:

- a set of classes: (+ sentiment,- sentiment)
- a vector x of features [$\mathrm{x} 1, \mathrm{x} 2$, ..., xn]
- xi= count("awesome")
- x2 = log(number of words in review)

1 per class it 2 closes
。 A vector w of weights [wi, w2, ..., mn]

- w_{i} for each feature f_{i}

$$
\begin{aligned}
& \text { feature } \mathrm{f}_{\mathrm{i}} \\
& \begin{aligned}
P(y=1) & =\ddot{\sigma}(w \cdot x+b) \quad \text { softhor it mane fran } 2 \\
& =\frac{1}{1+\exp (-(w \cdot x+b))}
\end{aligned}
\end{aligned}
$$

The two phases of logistic regression

Training: we learn weights w and b using stochastic gradient descent and cross-entropy loss.
lesinuy olgaitum metric

Test: Given a test example x we compute $p(y \mid x)$ using learned weights w and b, and return whichever label $(y=1$ or $y=0)$ is higher probability

How Does Learning Work?

Learning in Supervised Classification

Supervised classification:

- We know the correct label y (either 0 or 1) for each x.
- But what the system produces is an estimate, \hat{y}

We want to set w and b to minimize the distance between our estimate $\hat{y}^{(i)}$ and the true $y^{(i)}$.

- We need a distance estimator: a loss function or a cost function
- We need an optimization algorithm to update w and b to minimize the loss.

Learning components

A loss function: cross-entropy loss negotre log likelihood (ass $\}^{\text {same }}$

An optimization algorithm:
stochastic gradient descent
w / θ : used intachameobly to denote weights (learned parameters)

The distance between \hat{y} and y
\hat{y} : our classifier.' guest (between O\&1)
y : the detepoint 's actual label the class the doc actually belongs to (eitur 0 or 1)
$L(\hat{y}, y)$: han for off is ar modal loss from tore thrive label?

Intuition of negative log likelihood loss
 = cross-entropy loss

A case of conditional maximum likelihood estimation

We choose the parameters w, b that maximize

- the log probability
- of the true y labels in the training data
- given the observations x

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label $p(y \mid x)$
Maximize: $p(y \mid x)=\hat{y}^{y}(1-\hat{y})^{1-y}$ matures Since there are only 2 discresteño outcomes (0 or 1) we can express the probability $p(y \mid x)$ from our classifier as:

Note:

$$
\begin{aligned}
& y=1 \text {, furs simplifies } \hat{y} \\
& y=0, \text { this simplifies to } 1-\hat{y}
\end{aligned}
$$

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label $p(y \mid x)$
Maximize: $\quad p(y \mid x)=\hat{y}^{y}(1-\hat{y})^{1-y}$

$$
\begin{aligned}
\log p(y \mid x) & =\log \left[\hat{y}^{\prime \prime}(1-\hat{y})^{1-y}\right] \\
& =y \log \hat{y}+(1-y) \log (1-\hat{y})
\end{aligned}
$$

Deriving cross-entropy loss for a single observation x
Goal: maximize probability of the correct label $p(y \mid x)$
Minimize the cross-entropy loss
Minimize: $L_{\mathrm{CE}}(\hat{y}, y)=-\log p(y \mid x)$

$$
=-[y \log \hat{y}+(1-y) \log (1-\hat{y})]
$$

$$
L C E(\hat{y}, y)=-[y \log \sigma(\omega x+b)+(1-y) \log (1-\sigma(\omega x+b))]
$$

Does this work for our sentiment example?

We want loss to be:

- smaller if the model estimate is close to correct bigger if model is confused

Let's first suppose the true label of this is $\mathrm{y}=1$ (positive)
It's hokey . There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable ? For one thing , the cast is great. Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you .

Let's see if this works for our sentiment example

$$
\begin{aligned}
& w=[2.5,-5,-1.2,0.5,2,0.7] \quad b=0.1 \\
& x=[3,2,1,3,0,4.19]
\end{aligned}
$$

True value is $y=1$. How well is our model doing?

$$
\begin{aligned}
p(+\mid x)=P(y=1 \mid x) & =\sigma(w x+b) \\
& =\sigma(w \cdot x+0.1) \\
& =\sigma(0.833) \\
& =0.70
\end{aligned}
$$

Let's see if this works for our sentiment example

True value is $\mathrm{y}=1$. How well is our model doing?

$$
p(+\mid x)=P(y=1 \mid x)=0.7
$$

Pretty well! What's the loss?

$$
\begin{aligned}
L_{\mathrm{CE}}(\hat{y}, y) & =-[y \log \hat{y}+(1-y) \log (1-\hat{y})] \\
& =-[y \log (0.7)+(1-y) \log (1-0.7)] \\
& =-[1 \cdot \log (0.7)+(1-1) \log (1-0.7)] \\
& =-\log (0.7)=\frac{0.36}{}
\end{aligned}
$$

What if the true label was 0 ?

$$
p(+\mid x)=P(y=1 \mid x)=
$$

What if the true label was 0 ?

$$
\begin{aligned}
p(+\mid x) & =P(y=1 \mid x)=0.7 \\
p(-\mid x) & =1-p(+1 x) \\
& =0.3
\end{aligned}
$$

$$
\begin{aligned}
L_{\mathrm{CE}}(\hat{y}, y) & =-[y \log \sigma(w x+b)+(1-y) \log (1-\sigma(w x+6))] \\
& =-[0 \cdot \log \hat{y}+(1-0) \log (1-0.7)] \\
& =-\log (0.3) \\
& =1.3
\end{aligned}
$$

The loss when model was right (if true $\mathrm{y}=1$)

$$
\begin{array}{rlrl}
L_{\mathrm{CE}}(\hat{y}, y) & = & & -[y \log \sigma(w \cdot x+b)+(1-y) \log (1-\sigma(w \cdot x+b))] \\
& = & -[\log \sigma(w \cdot x+b)] \\
& = & -\log (.70) \\
& = & .36
\end{array}
$$

Is lower than the loss when model was wrong (if true $y=0$):

$$
\begin{aligned}
L_{\mathrm{CE}}(\hat{y}, y) & = & -[y \log \sigma(w \cdot x+b)+(1-y) \log (1-\sigma(w \cdot x+b))] \\
& = & -[\log (1-\sigma(w \cdot x+b))] \\
& = & -\log (.30) \\
& = & 1.2
\end{aligned}
$$

Stochastic Gradient Descent

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights $\theta=(w, b)$

We'll represent \hat{y} as $f(x ; \theta)$ to make the dependence on θ more obvious $\uparrow_{i} \hat{\tau}_{\theta}=$ model's parameters We want the weights in that minimize the loss, averaged over all examples:

$$
\hat{\theta}=\underset{\operatorname{argmin}}{\operatorname{arm}} \sum_{i=1}^{m} L_{C E}\left(f\left(x^{(i)} ; \theta\right), y^{(i)}\right)
$$

Intuition of gradient descent

How do I get to the bottom of this river canyon?

Look around me 360
Find the direction of steepest slope down

Go that way

Our goal: minimize the loss

For logistic regression, loss function is convex

- A convex function has just one minimum
- Gradient descent starting from any point is guaranteed to find the minimum
- (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

$$
w=\operatorname{cont} \text { (positue) }
$$

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Gradients

The gradient of a function of many variables is a vector pointing in the direction of the greatest increase in a function.

Gradient Descent: Find the gradient of the loss function at the current point and move in the opposite direction.

How much do we move in that direction?

The value of the gradient (slope in our example) $\frac{d}{d w} L(f(x ; w), y)$ weighted by a learning rate $\eta \quad$ nyperporameter Higher learning rate means that we make bigger adjustments to the weights

$$
w^{t+1}=w^{t}-\eta \frac{d}{d w} L(f(x ; w), y)
$$

T if colly meknes tron!!
partulaemer weir

Now let's consider N dimensions

We want to know where in the N dimensional space (of the N parameters that make up θ) we should move.
The gradient is just such a vector; it expresses the directional components of the sharpest slope along each of the N dimensions.

Imagine 2 dimensions, w and b

Visualizing the gradient vector at the red point
It has two dimensions shown in the x y plane

function Stochastic Gradient $\operatorname{Descent}(L(), f(), x, y)$ returns θ

\# where: L is the loss function
\# f is a function parameterized by θ
\# $\quad \mathrm{x}$ is the set of training inputs $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$
\# y is the set of training outputs (labels) $y^{(1)}, y^{(2)}, \ldots, y^{(m)}$
$\theta \leftarrow 0$
repeat til done \# see caption
For each training tuple $\left(x^{(i)}, y^{(i)}\right)$ (in random order)

1. Optional (for reporting): \# How are we doing on this tuple?
prodiction Compute $\hat{y}^{(i)}=f\left(x^{(i)} ; \theta\right)$ \# What is our estimated output \hat{y} ? Compute the loss $L\left(\hat{y}^{(i)}, y^{(i)}\right)$ \# How far off is $\hat{y}^{(i)}$ from the true output $y^{(i)}$? 2. $g \leftarrow \nabla_{\theta} L\left(f\left(x^{(i)} ; \theta\right), y^{(i)}\right) \quad$ \# How should we move θ to maximize loss?
2. $\theta \leftarrow \theta-\eta g \quad$ \# Go the other way instead
return θ

Hyperparameters

The learning rate η is a hyperparameter

- too high: the learner will take big steps and overshoot
- too low: the learner will take too long Hyperparameters:
- Briefly, a special kind of parameter for an ML model
- Instead of being learned by algorithm from supervision (like regular parameters), they are chosen by algorithm designer.

How much do we move in that direction?

The value of the gradient (slope in our example) $\frac{d}{d w} L(f(x ; w), y)$ weighted by a learning rate η
Higher learning rate means that we make bigger adjustments to the weights

$$
w^{t+1}=w^{t}-\eta \frac{d}{d w} L(f(x ; w), y)
$$

Partial Derivative for Logistic Regression
Cross-Entropy $L_{\mathrm{CE}}(\hat{y}, y)=-[y \log \sigma(w \cdot x+b)+(1-y) \log (1-\sigma(w \cdot x+b))]$ Loss

Chain Rule: $\left.\frac{\partial f}{\partial x}=\frac{d v}{d v} \cdot \frac{d v}{\partial x}\right]$
Weight Update $w^{t+1}=w^{t}-\eta \frac{d}{d w} L(f(x ; w), y) \quad f(x)=u(v(x))$

$$
\begin{aligned}
& \begin{array}{c}
\text { Derivative } \\
\text { of Loss }
\end{array} \quad \frac{\partial L(f(x ; \theta), y)}{\partial w}=\frac{\partial-[y \log \sigma(w x+b)+(1-y) \log (1-G w+4))]}{\partial w} \\
& =-\frac{y}{\sigma(w x+6)} \cdot \frac{\partial \sigma(\omega x+b)}{\partial w}=\frac{\partial_{y} \log \sigma(\omega x+b)}{\partial w}+\frac{\partial(1-y)(\log (1-\sigma(w x+b)}{\partial w} \cdot \frac{\partial(1-\sigma w x+6)}{1-\sigma(w x+b)}
\end{aligned}
$$

Partial Derivative for Logistic Regression

Cross-Entropy Loss

$L_{\mathrm{CE}}(\hat{y}, y)=\quad-[y \log \sigma(w \cdot x+b)+(1-y) \log (1-\sigma(w \cdot x+b))]$
Weight Update

$$
w^{t+1}=w^{t}-\eta \frac{d}{d w} L(f(x ; w), y)
$$

Derivative of Cross-Entropy Loss
\hat{y}
$\frac{d}{d w} L(f(x ; w), y)=[\sigma(w \cdot x+b)-y] x_{j}$

Deriving cross-entropy loss for multi-label classification

Goal: maximize probability of the correct label $p(y \mid x)$

$$
L_{\mathrm{CE}}(\hat{\mathbf{y}}, \mathbf{y})=-\sum_{k=1}^{K} \mathbf{y}_{k} \log \hat{\mathbf{y}}_{k}
$$

Overfitting

A model that perfectly match the training data has a problem.

It will also overfit to the data, modeling noise

- A random word that perfectly predicts y (it happens to only occur in one class) will get a very high weight.
- Failing to generalize to a test set without this word.

A good model should be able to generalize

Overfitting

Useful or harmless features

This movie drew me in, and it'll do the same to you.

$$
\begin{aligned}
& \text { X1 }=\text { "this" } \\
& \text { X2 }=\text { "movie } \\
& \text { X3 }=\text { "hated" } \\
& \text { X4 }=\text { "drew me in" }
\end{aligned}
$$

I can't tell you how much I hated this movie. It sucked.

X5 = "the same to you"
X7 = "tell you how much"
"Memorizing" the training data can cause problems

Overfitting

4-gram model on tiny data will just memorize the data

- 100\% accuracy on the training set

But it will be surprised by the novel 4-grams in the test data

- Low accuracy on test set

Models that are too powerful can overfit the data

- Fitting the details of the training data so exactly that the model doesn't generalize well to the test set
- How to avoid overfitting?
- Regularization in logistic regression
- Dropout in neural networks

Game

www.i-am.ai / gradient-descent.html

