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p(wj |students opened their) =
count(students opened their wj)
count(students opened their)

n-gram models
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Title	Text

7

Problems with	n-gram	Language	Models

2/1/1813

Storage:	Need	to	store	count	
for	all	possible	n-grams.	So	
model	size	is	O(exp(n)).

Increasing	nmakes	model	size	huge!
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Title	Textanother issue:
• We treat all words / prefixes independently of 

each other!

8

students opened their ___

pupils opened their ___

scholars opened their ___

undergraduates opened their ___

students turned the pages of their ___

students attentively perused their ___

…

Shouldn’t we share 
information across these 

semantically-similar prefixes?
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students opentheir eye

I
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Neural Net Classification with embeddings as input features!



Issue: texts come in different sizes

This assumes a fixed size length (3)!   

   

Some simple solutions (more sophisticated solutions later) 

1. Make the input the length of the longest review 
• If shorter then pad with zero embeddings 

• Truncate if you get longer reviews at test time 

2. Create a single "sentence embedding" (the same 
dimensionality as a word) to represent all the words 

• Take the mean of all the word embeddings 

• Take the element-wise max of all the word embeddings 
• For each dimension, pick the max value from all words

11

learning MEEN

J

Markov
assumption

8 tenremledding

Bagofword



Title	Textcomposing embeddings

• neural networks compose word embeddings into 
vectors for phrases, sentences, and documents

 neural 
network ( ) = 

opened theirstudents

Slides adapted from Mohit Iyyer

1 Compose by concatenating ten rn

2 Compose by averaging fence
input embedding

O



Title	TextPredict the next word from 
composed prefix representation

 neural 
network ( ) = 

opened theirstudents

predict “books”
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Title	TextHow does this happen? Let’s work our 
way backwards, starting with the 

prediction of the next word

17

 neural 
network ( ) = 

opened theirstudents

predict “books”
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Title	TextHow does this happen? Let’s work our 
way backwards, starting with the 

prediction of the next word

18

 neural 
network ( ) = 

opened theirstudents

predict “books”

Softmax layer: 

convert a vector representation 

into a probability distribution 
over the entire vocabulary

Slides adapted from Mohit Iyyer
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Title	TextA	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

19

Low-dimensional 
representation of 

“students opened their”

Probability distribution 
over the entire  

vocabulary
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Vocabulary



Title	TextA	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

20

Low-dimensional 
representation of 

“students opened their”

Probability distribution 
over the entire  

vocabulary

P(wi |vector for "students opened their")
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22

<0.6, 0.2, 0.1, 0.1>
books

houses
lamps

stamps

We want to get a 
probability 

distribution over 
these four words

Let’s say our output vocabulary 
consists of just four words: “books”,  

“houses”, “lamps”, and “stamps”.

Low-dimensional 
representation of 

“students opened their”
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Gooks houses
lamp stamps
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22

<0.6, 0.2, 0.1, 0.1>
books

houses
lamps

stamps

We want to get a 
probability 

distribution over 
these four words

Let’s say our output vocabulary 
consists of just four words: “books”,  

“houses”, “lamps”, and “stamps”.

Low-dimensional 
representation of 

“students opened their”
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start	with	a	small	
vector	representation	
of	the	sentence	preBix

I SOFTMAX

books houses pops stamp 2IW.X 8 11.9 12.9 8.97
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<0.6, 0.2, 0.1, 0.1>
books

houses
lamps

stamps

We want to get a 
probability 

distribution over 
these four words

Let’s say our output vocabulary 
consists of just four words: “books”,  

“houses”, “lamps”, and “stamps”.

Low-dimensional 
representation of 

“students opened their”
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start	with	a	small	
vector	representation	
of	the	sentence	preBix
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<0.6, 0.2, 0.1, 0.1>
books

houses
lamps

stamps

We want to get a 
probability 

distribution over 
these four words

Let’s say our output vocabulary 
consists of just four words: “books”,  

“houses”, “lamps”, and “stamps”.

Low-dimensional 
representation of 

“students opened their”

Slides adapted from Mohit Iyyer

just	like	in	regression,	
we	will	learn	a	set	of	
weights



Title	Text
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<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x = Here’s an example 3-d 
prefix vector

Slides adapted from Mohit Iyyer



Title	Text

24

first, we’ll project our 
3-d prefix 

representation to 4-d 
with a matrix-vector 

product

<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 

0.2,  0.4,  -2.2 

8.9,  -1.9,  6.5 

4.5,  2.2,  -0.1
}{W =

x =
Here’s an example 3-d 

prefix vector
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<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 

0.2,  0.4,  -2.2 

8.9,  -1.9,  6.5 

4.5,  2.2,  -0.1
}{W =

x =

intuition: each 
dimension of x 

corresponds to a 
feature of the prefix
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26

intuition: each row 
of W contains 

feature weights for a 
corresponding word 

in the vocabulary

<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 

0.2,  0.4,  -2.2 

8.9,  -1.9,  6.5 

4.5,  2.2,  -0.1
}{W =

x =

intuition: each 
dimension of x 

corresponds to a 
feature of the prefix
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27

intuition: each row 
of W contains 

feature weights for a 
corresponding word 

in the vocabulary

<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 

0.2,  0.4,  -2.2 

8.9,  -1.9,  6.5 

4.5,  2.2,  -0.1
}{W =

x =

intuition: each 
dimension of x 

corresponds to a 
feature of the prefix

boo
ks

hou
ses

lam
ps

sta
mp

s
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intuition: each row 
of W contains  

feature weights for a 
corresponding word 

in the vocabulary

<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

CAUTION: we can’t 
easily interpret these 

features! For example, 
the second dimension 

of x likely does not 
correspond to any 
linguistic property

intuition: each 
dimension of x 

corresponds to a 
feature of the prefix

boo
ks

hou
ses

lam
ps

sta
mp

s
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<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x = Here’s an example 3-d 
prefix vector
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now	we	compute	the	output	
for	this	layer	by	taking	the	
dot	product	between	x	and	W



Title	Text
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<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

Wx = <1.8, -11.9,  12.9,  -8.9>
How did we compute 

this? Just the dot product 
of each row of W with x! 

1.2 * -2.3  
+ -0.3 * 0.9  
+ 0.9 * 5.4
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32

Wx = <1.8, -11.9,  12.9,  -8.9>

Okay, so how do we go 
from this 4-d vector to a 
probability distribution?

Slides adapted from Mohit Iyyer
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Wx = <1.8, -11.9,  12.9,  -8.9>

Okay, so how do we go 
from this 4-d vector to a 
probability distribution?

RESULT:
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Wx = <1.8, -11.9,  12.9,  -8.9>

Okay, so how do we go 
from this 4-d vector to a 
probability distribution?

RESULT:



so to sum up…

• Given a d-dimensional vector 
representation x of a prefix, we do the 
following to predict the next word: 

1. Project it to a V-dimensional vector using a 
matrix-vector product (a.k.a. a “linear layer”, or a 
“feedforward layer”), where V is the size of the 
vocabulary 

2. Apply the softmax function to transform the 
resulting vector into a probability distribution

35

So far, this is just multi-class regression on word embeddings!



Title	Text

36

Now that we know how to predict “books”, 
let’s focus on how to compute the prefix 

representation x in the first place!

 neural 
network ( ) = 

opened theirstudents

predict “books”

36 Slides adapted from Mohit Iyyer



Title	TextComposition functions
input: sequence of word embeddings corresponding to 
the tokens of a given prefix 

output: single vector 

• Element-wise functions  
• e.g., just sum up all of the word embeddings! 

• Concatenation 

• Feed-forward neural networks 

• Convolutional neural networks 

• Recurrent neural networks 

• Transformers (our focus this semester)
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Title	Text

Let’s look first at concatenation, an easy to 
understand but limited composition function

38 Slides adapted from Mohit Iyyer
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A	fixed-window	neural	Language	Model

the students opened theiras	 the	 proctor	 started	 the clock ______

discard fixed	window
2/1/1821

Slides adapted from Mohit Iyyer
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A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1c + b1)

x = [c1; c2; c3; c4]
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A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]
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A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]

f is a nonlinearity, or an element-wise nonlinear function. 
The most commonly-used choice today is the rectified 

linear unit (ReLu), which is just ReLu(x) = max(0, x). 
Other choices include tanh and sigmoid.
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A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]
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Neural Language Model 

Slides borrowed from Jurafsky & Martin Edition 3



Training	a	Fixed-Length	
Neural	Language	Model



Goal:	given	"students	open	their",	predict	"books"

Itai
T softmax hw

Din
T T T We

At
students opened

their

CI Cz 63



Key	Question:	what	are	the	parameters?

Wz pre
sofmax weights

Wa input weights

Ca Ca G word embeddings

1 randomly initialize

2 Learn weight by updating during
training


