CS 333:
Natural Language

Fall 2023

 ProcessingProf. Carolyn Anderson
Wellesley College

Computer Science Colloquium Series | Fall 2023

Supporting Responsible Al Practices in Public Sector Contexts

Anna is a third year PhD student at Carnegie Mellon's HumanComputer Interaction Institute. Her research focuses on improving the design, evaluation, and governance of Al technologies used to inform complex, consequential decisions in real-world organizations. In addition to her research, she will share prior experiences forming collaborations with public sector agencies, doing research internships with industry groups, travelling to conferences, and mentoring undergraduate students. The session will end with an open Q/A discussion on applying to and doing a PhD in Computer Science / Human-Computer Interaction and other topics.

Neural Language Models

language model review

- Goal: compute the probability of a sentence or sequence of words:

$$
P(W)=P\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \ldots w_{n}\right)
$$

- Related task: probability of an upcoming word:

$$
P\left(W_{5} \mid W_{1}, W_{2}, W_{3}, W_{4}\right)
$$

- A model that computes either of these:
$\mathrm{P}(\mathrm{W})$ or $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1}, \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}-1}\right)$ is called a language model or LM

n-gram models

$p\left(w_{j} \mid\right.$ students opened their $)=\frac{\left.\text { count(students opened their } w_{j}\right)}{\text { count(students opened their) }}$

Problems with n -gram Language Models

Sparsity Problem 1

Problem: What if "students opened their \boldsymbol{w}_{j} " never occurred in data? Then \boldsymbol{w}_{j} has probability 0 !

$p\left(w_{j} \mid\right.$ students opened their $)=\frac{\left.\text { count(students opened their } w_{j}\right)}{\operatorname{count}(\text { students opened their) }}$

Problems with n -gram Language Models

Sparsity Problem 1
Problem: What if "students opened their \boldsymbol{w}_{j} " never occurred in data? Then w_{j} has probability 0 !
(Partial) Solution: Add small δ to count for every $\boldsymbol{w}_{j} \in V$. This is called smoothing.
$p\left(w_{j} \mid\right.$ students opened their $)=\frac{\left.\text { count(students opened their } w_{j}\right)}{\text { count(students opened their) }}$

Problems with n-gram Language Models

Increasing n makes model size huge!

another issue:

- We treat all words / prefixes independently of each other!

Students opened their pupils opened their \qquad scholars opened their undergraduates opened their \qquad students turned the pages of their \qquad students attentively perused their \qquad

Neural Net Classification with embeddings as input features!

Issue: texts come in different sizes

This assumes a fixed size length (3)!

${ }^{w} 1$ len(embuldim) $\times M_{1} \times=$ LEN

Some simple solutions (more sophisticated solutions later)

1.Make the input the length of the longest review Markov If shorter then pad with zero embeddings

- Truncate if you get longer reviews at test time

Create a single "sentence embedding" (the same dimensionality as a word) to represent all the words

- Take the mean of all the word embeddings Bag-af-werds
- Take the element-wise max of all the word embeddings
- For each dimension, pick the max value from all words

composing embeddings

- neural networks compose word embeddings into vectors for phrases, sentences, and documents

$$
\begin{aligned}
& \text { 1. Compose by concatenatiny: } \operatorname{len}(E) \times n \\
& \text { 2. Compose by averroging } \operatorname{len}(E)
\end{aligned}
$$

neural students opened their network ($\square \square)=\square$

Predict the next word from composed prefix representation

predict "books"

neural students opened their

network ($\|$ ■ \quad) = \|

How does this happen? Let's work our way backwards, starting with the prediction of the next word

predict "books"
neural students opened their

How does this happen? Let's work our way backwards, starting with the prediction of the next word

convert a vector representation into a probability distribution over the entire vocabulary

Slides adapted from Mohit Iyyer

$P\left(w_{i} \mid\right.$ vector for "students opened their")

Let's say our output vocabulary consists of just four words: "books", "houses", "lamps", and "stamps".

$$
\begin{aligned}
& \text { books houses lamps stamps } \\
& <0.6,0.2,0.1,0.1>
\end{aligned}
$$

We want to get a probability distribution over these four words

Let's say our output vocabulary consists of just four words: "books", "houses", "lamps", and "stamps".

We want to get a probability
distribution over these four words

$$
\begin{aligned}
& \text { boche } \sqrt{\text { SOFTMAX }} \\
& \text { books nouses bays stamps } 2=\omega+x=\langle 1.8,-11.9,12.9,-8.9\rangle \\
& \langle 0.2,0.05,0.7,0.05\rangle \\
& W_{1} x=\langle 1.2-0.30 .9\rangle \\
& \langle-2.3,0.9,5.4\rangle \\
& =1.2^{*}-2.3+-0.3^{*} 0.9 \\
& +0.9 * 5.4 \\
& =1.8 \\
& \begin{array}{ll}
\text { start with a small } & \text { not } \\
\text { numen- } \\
\text { vector representation } \\
\text { of the sentence prefix }
\end{array} \quad \begin{array}{l}
\text { interpretable: }
\end{array} \\
& W \cdot x \text { (dot product) } \\
& \uparrow \\
& \left\{\begin{array}{ccc}
1.2 & -0.3 & 0.9 \\
0.2 & 0.4 & -2.2 \\
8.9 & -1.9 & 65 \\
4.5 & 2.2 & -0.1
\end{array}\right\} \begin{array}{l}
r-\text { boche }^{2} \\
<- \text { user } \\
<\text { lamps } \\
<- \text { stamps }
\end{array} \\
& \begin{array}{l}
\left\langle\begin{array}{ccc}
-2.3, & 0.9, & 5.4\rangle \\
\hline 1 & 1 & 1 \\
\hline 1 & 1
\end{array}\right. \\
\hline
\end{array} \\
& \text { students opened their" }
\end{aligned}
$$

start with a small vector representation of the sentence prefix

Low-dimensional representation of "students opened their"
just like in regression, we will learn a set of weights

Low-dimensional representation of "students opened their"

$$
\mathbf{W}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1.9, & 6.5 \\
4.5, & 2.2, & -0.1
\end{array}\right\}
$$

$\boldsymbol{x}=<-2.3,0.9,5.4>$
Here's an example 3-d prefix vector

$$
\mathbf{W}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1.9, & 6.5 \\
4.5, & 2.2, & -0.1
\end{array}\right\}
$$

first, we'll project our 3-d prefix
representation to 4-d with a matrix-vector product

Here's an example 3-d prefix vector

$$
\mathbf{W}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1.9, & 6.5 \\
4.5, & 2.2, & -0.1
\end{array}\right\}
$$

$$
\boldsymbol{x}=<-2.3,0.9,5.4>
$$

intuition: each dimension of \boldsymbol{x} corresponds to a feature of the prefix

intuition: each row of \mathbf{W} contains
 feature weights for a corresponding word in the vocabulary

$$
\mathbf{W}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1.9, & 6.5 \\
4.5, & 2.2, & -0.1
\end{array}\right\}
$$

$$
x=<-2.3,0.9,5.4>
$$

intuition: each dimension of \boldsymbol{x} corresponds to a feature of the prefix

intuition: each row of \mathbf{W} contains

feature weights for a corresponding word in the vocabulary

$$
x=<-2.3,0.9,5.4>
$$

intuition: each dimension of \boldsymbol{x} corresponds to a feature of the prefix
intuition: each row of \mathbf{W} contains feature weights for a corresponding word in the vocabulary

$$
x=<-2.3,0.9,5.4>
$$

CAUTION: we can't

 easily interpret these features! For example, the second dimension of \boldsymbol{x} likely does not correspond to any linguistic propertyintuition: each dimension of \boldsymbol{x} corresponds to a feature of the prefix

$$
\mathbf{W}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1.9, & 6.5 \\
4.5, & 2.2, & -0.1
\end{array}\right\}
$$

$$
x=<-2.3,0.9,5.4>
$$

now we compute the output for this layer by taking the dot product between x and W
$\mathbf{W} \boldsymbol{x}=<1.8,-11.9,12.9,-8.9\rangle$

$$
\mathbf{w}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1 & 9, \\
4.5 & 2.2, & -0.1
\end{array}\right\} \begin{aligned}
& 1.2^{*}-2.3 \\
& +-0.3^{*} 0.9 \\
& +0.9^{*} 5.4
\end{aligned}
$$

Okay, so how do we go from this 4-d vector to a probability distribution?
$\mathbf{W} \boldsymbol{x}=<1.8,-11.9,12.9,-8.9\rangle$

$$
\mathbf{W} \boldsymbol{x}=<1.8,-11.9,12.9,-8.9>
$$

RESULT:

$$
\mathbf{W} \boldsymbol{x}=<1.8,-11.9,12.9,-8.9>
$$

RESULT:

Given a d-dimensional vector representation \boldsymbol{x} of a prefix, we do the following to predict the next word:

1. Project it to a V-dimensional vector using a matrix-vector product (a.k.a. a "linear layer", or a "feedforward layer"), where V is the size of the vocabulary
2. Apply the softmax function to transform the resulting vector into a probability distribution

So far, this is just multi-class regression on word embeddings!

Now that we know how to predict "books", let's focus on how to compute the prefix representation \boldsymbol{x} in the first place!

predict "books"

neural students opened their
network ($\square \square \square$

Composition functions

input: sequence of word embeddings corresponding to the tokens of a given prefix output: single vector

- Element-wise functions
- e.g., just sum up all of the word embeddings!
- Concatenation
- Feed-forward neural networks
- Convolutional neural networks
- Recurrent neural networks
- Transformers

Let's look first at concatenation, an easy to understand but limited composition function

A fixed-window neural Language Model

f: ReL tanh
sigmoid sofftrex

$$
\left[c_{1} ; c_{2} ; c_{3} ; c_{4}\right]
$$

discard

Slides adapted from Mohit Iyyar

A fixed-window neural Language Model

concatenated word embeddings

$$
x=\left[c_{1} ; c_{2} ; c_{3} ; c_{4}\right]
$$

words / one-hot vectors

$$
c_{1}, c_{2}, c_{3}, c_{4}
$$

Slides adapted from Mohit Iyyer

A fixed-window neural Language Model

hidden layer
$h=f\left(W_{1} x\right)$
concatenated word embeddings

$$
x=\left[c_{1} ; c_{2} ; c_{3} ; c_{4}\right]
$$

words / one-hot vectors

$$
c_{1}, c_{2}, c_{3}, c_{4}
$$

Slides adapted from Mohit Iyyer

A fixed-window neural Language Model

f is a nonlinearity, or an element-wise nonlinear function. The most commonly-used choice today is the rectified linear unit (ReLu), which is just $\operatorname{ReLu}(x)=\max (0, x)$.

Other choices include tanh and sigmoid.
hidden layer

$$
h=f\left(W_{1} x\right)
$$

concatenated word embeddings

$$
x=\left[c_{1} ; c_{2} ; c_{3} ; c_{4}\right]
$$

words / one-hot vectors

$$
c_{1}, c_{2}, c_{3}, c_{4}
$$

A fixed-window neural Language Model

output distribution
$\hat{y}=\operatorname{softmax}\left(W_{2} h\right)$
hidden layer

$$
h=f\left(W_{1} x\right)
$$

concatenated word embeddings

$$
x=\left[c_{1} ; c_{2} ; c_{3} ; c_{4}\right]
$$

words / one-hot vectors

$$
c_{1}, c_{2}, c_{3}, c_{4}
$$

Neural Language Model

Slides borrowed from Jurafsky \& Martin Edition 3

Training a Fixed-Length
Neural Language Model

Goal: given "students open their", predict "books"

Key Question: what are the parameters?
W_{2} : pre-sofmax weights
W_{1} : input weights
C_{1}, C_{2}, C_{3} : word embeddings

1. randomly initialize
2. learn weight by updating diving training
