CS 333: Natural Language Processing

Prof. Carolyn Anderson Wellesley College

Fall 2023

"you can't cram the meaning of a whole %&@#&ing sentence into a single \$*(&@ing vector!"

Ray Mooney (NLP professor at UT Austin)

Slides adapted from Mohit Iyyer

idea: what if we use multiple vectors?

Instead of this, let's try:

the students opened their =

Slides adapted from Mohit Iyyer

The solution: attention

- Attention mechanisms (Bahdanau et al., 2015) allow language models to focus on a particular part of the observed context at each time step
 - Originally developed for machine translation, and intuitively similar to *word alignments* between different languages

Self-Attention

Self-attention

Self-attention

Self-attention

Self-attention

Self-attention

Self-attention

Self-attention

Self-attention

[Vaswani et al. 2017]

Multi-head self-attention

[Vaswani et al. 2017]

Multi-head self-attention

Slides by Emma Strubell! [Vaswani et al. 2017] Multi-head self-attention

Self-Attention

1. Compte dot product:

0.25 Vi
$$+ 0.5$$
 Vi $+ 0.25$ Vi $= 21$
 $20.25 0.5 0.757$
 $41k_1 q_1 k_2 q_1 k_3 7$
 $k = 227$
 $k = 277$
 $k = 2777$
 $k = 277$

Transformers

Positional encoding

Creating positional encodings?

- We could just concatenate a fixed value to each time step (e.g., 1, 2, 3, ... 1000) that corresponds to its position, but then what happens if we get a sequence with 5000 words at test time?
- We want something that can generalize to arbitrary sequence lengths. We also may want to make attending to *relative positions* (e.g., tokens in a local window to the current token) easier.
- Distance between two positions should be consistent with variable-length inputs

Intuitive example

0	:	0	0	0	0	8:	1	0	0	0
1	:	0	0	0	1	9:	1	0	0	1
2	:	0	0	1	0	10:	1	0	1	0
3	:	0	0	1	1	11 :	1	0	1	1
4	:	0	1	0	0	12:	1	1	0	0
5	:	0	1	0	1	13:	1	1	0	1
6	:	0	1	1	0	14:	1	1	1	0
7	:	0	1	1	1	15:	1	1	1	1

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Transformer positional encoding

$$egin{aligned} PE_{(pos,2i)} &= \sin(rac{pos}{10000^{2i/d_{model}}}) \ PE_{(pos,2i+1)} &= \cos(rac{pos}{10000^{2i/d_{model}}}) \end{aligned}$$

Positional encoding is a 512d vector i = a particular dimension of this vector pos = dimension of the word $d_model = 512$

What does this look like?

(each row is the pos. emb. of a 50-word sentence)

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Despite the intuitive flaws, many models these days use *learned positional embeddings* (i.e., they cannot generalize to longer sequences, but this isn't a big deal for their use cases)

Hacks to make Transformers work

Optimizer

We used the Adam optimizer (cite) with $\beta_1 = 0.9$, $\beta_2 = 0.98$ and $\epsilon = 10^{-9}$. We varied the learning rate over the course of training, according to the formula: $lrate = d_{model}^{-0.5} \cdot min(step_num^{-0.5}, step_num \cdot warmup_steps^{-1.5})$ This corresponds to increasing the learning rate linearly for the first *warmup_steps* training steps, and decreasing it thereafter proportionally to the inverse square root of the step number. We used *warmup_steps* = 4000.

Note: This part is very important. Need to train with this setup of the model.

Label Smoothing

During training, we employed label smoothing of value $\epsilon_{ls} = 0.1$ (cite). This hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

We implement label smoothing using the KL div loss. Instead of using a one-hot target distribution, we create a distribution that has confidence of the correct word and the rest of the smoothing mass distributed throughout the vocabulary.

I went to class and tookcatsTVnotestooksofa00100

Label Smoothing

During training, we employed label smoothing of value $\epsilon_{ls} = 0.1$ (cite). This hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

We implement label smoothing using the KL div loss. Instead of using a one-hot target distribution, we create a distribution that has confidence of the correct word and the rest of the smoothing mass distributed throughout the vocabulary.

I went to class and took cats TV notes took sofa 0 0 1 0 0 0.025 0.025 0.99 0.025 0.025

Why these decisions?

Unsatisfying answer: they empirically worked well. Neural architecture search finds even better Transformer variants:

Primer: Searching for efficient Transformer architectures... So et al., Sep. 2021

A Encoder - Decoder : Useful for machine translation e2 - Conditional 1 ---unmarcol fext generation Offention 4 Mybed attactiv 1 Q,

Common Transformers

Common Transformers

Common Transformers

Decoder only: GPT-3 $\begin{array}{c} \Gamma^{1} (2) \Gamma^{2} (3) \\ \hline \\ \Gamma^{1} (1) \Gamma^{2} (1) \\ \hline \\ 1) 1 \\ \end{array}$ Useful for Masted set-attention 1 1 1 fext generation C_1 C_2 C_3

Le chat rouge... CENG7 The cat... 1 T T The Costs of Deep Learning

OpenAl's Transformer LMs

- GPT (Jun 2018): 117 million parameters, trained on 13GB of data (~1 billion tokens)
- GPT2 (Feb 2019): 1.5 billion parameters, trained on 40GB of data
- GPT3 (July 2020): 175 billion parameters, ~500GB data (300 billion tokens)

Models keep getting larger

https://huggingface.co/blog/large-language-models

Megatron (530 billion parameters), Microsoft's GPT-3 competitor, cost around **\$100 million** to train

www.lesswrong.com/posts/midXmMb2Xg37F2Kgn/new-scaling-laws-for-large-language-models

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (Rae et al., 2021)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Pathways (Chowdhery et al. 2022)	540 Billion	780 Billion

By contrast: children are exposed to around ~28,470,000* words in their critical language acquisition period.

* my back-of-envelope calculation from L1 acquisition studies where children are recorded 12 hr/day

Consumption	CO ₂ e (lbs)
Air travel, 1 person, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000

Training one model (GPU)

NLP pipeline (parsing, SRL)	39
w/ tuning & experiments	78,468
Transformer (big)	192
w/ neural arch. search	626,155

Table 1: Estimated CO_2 emissions from training common NLP models, compared to familiar consumption.¹

Strubell, Ganesh, & McCallum (2019)

Emma Strubell

BERT-L (340 million parameters) had a **carbon footprint** equivalent to a trans-American flight.

And remember:

Microsoft Megatron has 530 **billion** parameters... Google Pathways has 540 **billion** parameters...