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Title	Text
“you can’t cram the meaning 

of a whole  %&@#&ing 
sentence into a single 

$*(&@ing vector!” 

— Ray Mooney (NLP professor at UT Austin)
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Title	Textidea: what if we use multiple vectors?
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Sequence-to-sequence: the bottleneck problem
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<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis
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Decoder RNN
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Encoding of the 
source sentence. 

This needs to capture all 
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Information bottleneck!
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This representation needs to 
capture all information about 
“the students opened their”

the students opened their =

Instead of this, let’s try:
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(all 4 hidden states!)
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Title	TextThe solution: attention

• Attention mechanisms (Bahdanau et al., 
2015) allow language models to focus on a 
particular part of the observed context at 
each time step 
• Originally developed for machine translation, and 

intuitively similar to word alignments between 
different languages

17 Slides adapted from Mohit Iyyer
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Title	TextSelf-attention
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Title	TextMulti-head self-attention
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Title	Text

Multi-head self-attention + feed forward

Multi-head self-attention + feed forward
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Layer 1

Layer p

Multi-head self-attention + feed forwardLayer J
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Transformers















































common Transformers

Encoder Decoder Useful for machine
translation

in Conditional
I I text generation

É Emm



Common Transformers

Encoder only BERT

f
Useful for

Tmm representation
learningT T T T

C MASK Cz L CLS



Common Transformers

Decoder only GPT 3
PG PG
É

4

ashraf Useful for

T T T textgeneration
Ci Cz Cz

he chat rouge LENG The cat

T T T



The	Costs	of	Deep	Learning





https://huggingface.co/blog/large-language-models

Models	keep	getting	larger

Pathways (540B)



These	models	are	really	expensive!
Megatron (530 billion parameters), Microsoft's GPT-3 
competitor, cost around $100 million to train



These	models	are	really	expensive!

By contrast: children are exposed to around ~28,470,000* 
words in their critical language acquisition period.

* my back-of-envelope calculation from L1 acquisition studies where children are recorded 12 hr/day

www.lesswrong.com/posts/midXmMb2Xg37F2Kgn/new-scaling-laws-for-large-language-models

Pathways (Chowdhery et al. 2022)                    540 Billion           780 Billion



These	models	are	really	expensive!

Strubell, Ganesh, &  McCallum (2019)

Emma Strubell 



These	models	are	really	expensive!

And remember: 

Microsoft Megatron has 530 billion parameters...

Google Pathways has 540 billion parameters...

 

BERT-L (340 million parameters) had a carbon footprint 
equivalent to a trans-American flight.


