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Announcements
❖ Francesca Lucchetti will be giving a guest lecture 

on Tuesday.

❖ My help hours next week:

• Monday: 3:30-5

• Friday: 3:30-4:30



The	Deep	Learning	
Pipeline



The	Deep	Learning	Pipeline
Deep learning models can be run in two modes:

✦  Training: update a model’s weights to fit new data. 
This is supervised learning because it requires input/
output pairs (labeled data).

✦ Inference: run data through a model to make 
predictions. This requires only input data. It does not 
change the model weights.



Transfer	Learning
Contemporary machine learning often involves multiple 
stages of training: 

✦  Pre-training: train a large model that will be used by many 
downstream applications 
Called a foundation model in Bommasani et al. 2021

✦ Fine-tuning: adapting a pre-trained model to a new task or 
dataset by training it on new data, starting from existing 
weights.

✦ Prompt Engineering: framing a task so that it can be 
solved by a pretrained language model.

✦

https://arxiv.org/search/cs?searchtype=author&query=Bommasani%2C+R


Transfer	Learning
Contemporary machine learning models may also build 
upon other models by freezing the weights of the 
original model and taking some of its components as 
input.

For instance, the weights of attention heads may be re-
used as embeddings to be fed in as input to a downstream 
model.

This is called feature extraction.

This is what we did in the recipe classifier: we took attention weights from 
RoBERTa to use as features in our classifier!

or representation

learning



Pretraining: 
learn good 
representations via 
an unlabeled task.

Finetuning: 
train some more on 
in-domain data or 
separate labeled 
task

Prompt 
engineering: 
craft prompts that 
disguise task of 
interest as a language 
generation problem.

Representation 
learning: 
extract attention 
features and use as 
input features to 
another model

Few-shot	learning

Zero-shot	learning

Q/A

Google	Search

Code	generation

Coreference	resolution
Translation

ClassiCication

Summarization

Style	Transfer

Image	Captioning

Poem	generation

Story	generation

language modeling



The	Recent	Past



Welcome	to	Sesame	Street



Devlin et al. 2019

BERT: Bidirectional Encoder 
Representations for Transformers

Slides adapted from UMass CS 490A



Why BERT?

It’s an early one!

Slides adapted from UMass CS 490A



Why BERT?

Highly influential!

Slides adapted from UMass CS 490A



Sentiment Analysis

Circa 20B.it RNNsonlabelddatasets
issues

World knowledge

Syntax
Semantics

from not very much data expensive

Circa 2017 what if we could reuse a

language model for downstream tasks

Idea language modeling is cheap Whynot learn
first from an LM



ELMI 2018

1 Pretrain an RNN LM on

lotsofdata.liKi Ee 2 unidirectional

If FYI FYI froalnnig
2 Freeze the LM weights and reuse the

hidden states a s input to anothermodel

sentiment Model POS NEG

T T
IT 0111



BIRTIY.IMformer

LM trained on a ton of data

Two training objectives

1 Masked language modeling

2 Next sentence prediction



maskedlanguagemodelinginput.ca
sequence where some words

are randomly masked

MASK
Goal predict the identity of masted token
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opened
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s.LT IiE compute cross entropy loss

but only for masked

out
care

50mm
opened token

0

farmer
Backprop updates

to all weights

cassthnt asks
thattook not just the

masked embeddings

why stop at 1 MASK

You can actually mask upto 40



Nextsentenepredictionlnputi.CC
LS the man MASKS to

store SEP he bought a

gallon of MASK SEP

predict Is Next or NotNext

from the CLS embedding



I Finetning

to
farmers
are update

BERTD to specialize
in sentimen

analysis

CLS this movie sucks

Fine tune For sentence Classification



Pre-Training vs. Fine-Tuning

Devlin et al. 2019

Slides adapted from UMass CS 490A



Same internal architecture

Devlin et al. 2019

Slides adapted from UMass CS 490A



Different output layers & loss functions

Devlin et al. 2019

Slides adapted from UMass CS 490A



Pre-Training BERT Tasks

(1) Masked Language Model

(2) Next Sentence Prediction

Devlin et al. 2019

Slides adapted from UMass CS 490A



Masked Language Model

Setting: Randomly mask some tokens of the input

Objective: Predict the original word types of each masked 
token based solely on its context

Slides adapted from UMass CS 490A



Masked Language Model Procedure

Apply procedure to 15% of tokens

• 80% of the time: Replace the word with the [MASK] token

• 10% of the time: Replace the word with a random word

• 10% of the time: Keep the word unchanged

Devlin et al. 2019

Slides adapted from UMass CS 490A



Masked Language Model Procedure

Example: my dog is hairy

• 80% of the time: Replace the word with the [MASK] token
my dog is [MASK]

• 10% of the time: Replace the word with a random word
my dog is apple

• 10% of the time: Keep the word unchanged
my dog is hairy

Devlin et al. 2019

Slides adapted from UMass CS 490A



Masked Language Model Procedure

Example: my dog is hairy

• 80% of the time: Replace the word with the [MASK] token
my dog is [MASK]

• 10% of the time: Replace the word with a random word
my dog is apple

• 10% of the time: Keep the word unchanged
my dog is hairy

Devlin et al. 2019

Bidirectional language modeling

Slides adapted from UMass CS 490A



Masked Language Model Procedure

Example: my dog is hairy

• 80% of the time: Replace the word with the [MASK] token
my dog is [MASK]

• 10% of the time: Replace the word with a random word
my dog is apple

• 10% of the time: Keep the word unchanged
my dog is hairy

Devlin et al. 2019

Bidirectional language modeling

Mitigate mismatch between
pre-training & fine-tuning

Slides adapted from UMass CS 490A



Pre-Training BERT: MLM

Idea: Predict vocab ID of masked tokens from final 
embeddings

Devlin et al. 2019

Slides adapted from UMass CS 490A



Pre-Training BERT: NSP

Idea: Predict whether sentence B follows sentence A using the 
final embedding of the [CLS] token

Devlin et al. 2019

Slides adapted from UMass CS 490A



Fine-Tuning

Use pre-trained model parameters for initialization
Change pre-training output layers of BERT to suit task

Devlin et al. 2019

Slides adapted from UMass CS 490A



Fine-Tuning

Sentence Pair 
Classification

Single Sentence 
Classification

Question 
Answering

Single Sentence 
Tagging

Devlin et al. 2019

Slides adapted from UMass CS 490A



Fine-Tuning: Sentence Pair Classification

Devlin et al. 2019

Slides adapted from UMass CS 490A



Fine-Tuning: Single Sentence Classification

Devlin et al. 2019

Slides adapted from UMass CS 490A



Fine-Tuning: Question Answering

Devlin et al. 2019

Slides adapted from UMass CS 490A



Fine-Tuning: Single Sentence Tagging

Devlin et al. 2019

Slides adapted from UMass CS 490A



CoLA = Corpus of Linguistic Acceptability

Huge gains for many tasks!
GLUE Results

Devlin et al. 2019; Warstadt et al. 2019

Slides adapted from UMass CS 490A



Huge gains for many tasks!
Coreference Resolution

From slide of Bamman (2021)

“I voted for Nader because he was most aligned with 
my values,” she said.

Slides adapted from UMass CS 490A



Pretraining: 
learn good 
representations via 
an unlabeled task.

Finetuning: 
train some more on 
in-domain data or 
separate labeled 
task

Prompt 
engineering: 
craft prompts that 
disguise task of 
interest as a language 
generation problem.

Representation 
learning: 
extract attention 
features and use as 
input features to 
another model





Prompt	Engineering	



Chain-of-Thought	Reasoning
One idea is to make the model generate reasoning before 
an answer. This guarantees that the answer is conditioned 
on the reasoning. Some people think this could improve 
the quality of the answer. However, other work has shown 
that the answer is not always consistent with the given 
reasoning.





What	Are	Prompts	Really	Doing?

Results from Webson & Pavlick (2022)



Does	CoT	Help?



Does	CoT	Help?

Maybe not?



Continuous	Prompting
Humans write discrete prompts, which are then turned 
into text embeddings.
What if we tried to directly learn good text embeddings?






