## Language Modeling

## Introduction to N-grams

## Probabilistic Language Models

## Today's goal: assign a probability to a sentence

- Machine Translation:
- $P($ high winds tonite $)>P($ large winds tonite $)$
- Spelling Correction

Why?

- The office is about fifteen minuets from my house
- P(about fifteen minutes from) >P(about fifteen minuets from)
- Speech Recognition
- $P(I$ saw a van) >> P(eyes awe of an)


## Probabilistic Language Modeling

## Goal:

Compute the probability of a sentence or sequence of words:

$$
P(W)=P\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \ldots w_{n}\right)
$$

Related task: probability of an upcoming word:

$$
P\left(w_{5} \mid w_{1}, w_{2}, w_{3}, w_{4}\right)
$$

A model that computes either of these: $\mathrm{P}(\mathrm{W})$ or $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1}, \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}-1}\right) \quad$ is called a language model.

## How to compute P(W)

How to compute this joint probability:

- P(its, water, is, so, transparent, that)

Intuition: rely on the Chain Rule of Probability

Reminder: The Chain Rule

Recall the definition of conditional probabilities

$$
\begin{array}{cr}
p(B \mid A)= & \text { Rewriting: } P(A, B)=P(A) P(B \mid A) \\
\frac{P(A, B)}{P(A)} & P\left(x_{1}, x_{2} x_{3} \ldots x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \ldots \\
P\left(x_{n} \mid x_{1} \ldots x_{n-1}\right)
\end{array}
$$

## Reminder: The Chain Rule

Recall the definition of conditional probabilities

$$
p(B \mid A)=P(A, B) / P(A) \quad \text { Rewriting: } \quad P(A, B)=P(A) P(B \mid A)
$$

The Chain Rule in General

The Chain Rule applied to compute joint probability of words in sentence woposition 1

$$
\begin{aligned}
& P\left(w_{1} w_{2} \ldots w_{2}\right)=\pi_{i} p\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right) \\
& P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right. \\
& \vdots \mid \Gamma
\end{aligned}
$$

$$
P(\text { "its water is so transparent" })=\prod_{i} P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right)
$$ $w_{1} \quad w_{5}$

$$
=P(\text { its }) P(\text { motel its }) \ldots
$$

$$
P \text { (trongprect lifts vote is so) }
$$

$$
\begin{aligned}
& w_{5}=P\left(w_{1}=i+s\right) P\left(w_{2}=w_{t o r} \mid w_{1}=i t s\right) \\
& P\left(w_{3}=i s l_{w_{1}}=i t s, w_{2}=\text { water }\right) \\
& p\left(w_{4}=s o l w_{1}=i t s, w_{2}=\left(w a t, w_{3}=i s\right)\right.
\end{aligned}
$$

## How to estimate these probabilities

## Could we just count and divide?

$$
\langle s\rangle
$$

$P($ the $\mid$ its water is so transparent that $)=$
Count(its water is so transparent that the)
Count(its water is so transparent that)
Maximum Likelinood Estimates

## How to estimate these probabilities

Could we just count and divide?
$P($ the $\mid$ its water is so transparent that $)=$
Count(its water is so transparent that the)
Count(its water is so transparent that)

No! Too many possible sentences!
We'll never see enough data for estimating these

Markov Assumption
Simplifying assumption:
$P($ the $\mid$ its water isomsparent that $) \approx P($ the $\mid$ that $)$
$P($ the 1 is -ronprient that $) \approx P($ trel tranyon $)$ tricrem
undel: 3 3ward ints

## Markov Assumption

Approximate each component in the product:
$P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)$

## Simplest case: Unigram model

$$
P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i}\right)
$$

Some automatically generated sentences from a unigram model
fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass
thrift, did, eighty, said, hard, 'm, july, bullish that, or, limited, the

## Bigram model

## - Condition on the previous word: <br> $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{i}-1}\right) \approx \mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-1}\right)$

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen
outside, new, car, parking, lot, of, the, agreement, reached
this, would, be, a, record, november

## N -gram models

We can extend to trigrams, 4-grams, 5-grams
In general this is an insufficient model of language

- because language has long-distance dependencies:
"The computer which I had just put into the machine room on the fifth floor crashed."

But we can often get away with N-gram models

## Language Modeling

## Estimating N -gram Probabilities

How do we get probabilities?

$$
\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{i}-1}\right) \approx \mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-1}\right)
$$

From observing frequencies in a training corpus

## Estimating bigram probabilities

The Maximum Likelihood Estimate

$$
\begin{aligned}
P\left(w_{i} \mid w_{i-1}\right) & =\frac{\operatorname{con} t\left(w_{i-1}, w_{i}\right)}{\operatorname{con} t\left(w_{i-1}\right)} \\
P\left(w_{i} \mid w_{i-1}\right) & =\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
\end{aligned}
$$

An example

$$
\begin{aligned}
& P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)} \quad \begin{array}{l}
\text { <s> I am Sam </s> } \\
\text { <s }>\text { Sam I am </s> } \\
\text { <s> I do not like green eggs and ham </s> }
\end{array} \\
& P(I \mid\langle s\rangle)=\frac{(\langle\langle s\rangle I\rangle}{c(\langle s\rangle)}=2 / 3 \\
& P(\text { an } \mid I)=2 / 3 \\
& p(\operatorname{San} \mid\langle 5\rangle)=\frac{1}{3} \\
& p\left(d_{0} \mid I\right)=1 / 3
\end{aligned}
$$

More examples:

## Berkeley Restaurant Project sentences

can you tell me about any good cantonese restaurants close by mid priced thai food is what i'm looking for tell me about chez panisse
can you give me a listing of the kinds of food that are available i'm looking for a good place to eat breakfast when is caffe venezia open during the day

## Raw bigram counts

Out of 9222 sentences
$w_{2}$

|  | i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{i}$ | 5 | 827 | 0 | 9 | 0 | 0 | 0 | 2 |
| want | 2 | 0 | 608 | 1 | 6 | 6 | 5 | 1 |
| to | 2 | 0 | 4 | 686 | 2 | 0 | 6 | 211 |
| eat | 0 | 0 | 2 | 0 | 16 | 2 | 42 | 0 |
| chinese | 1 | 0 | 0 | 0 | 0 | 82 | 1 | 0 |
| food | 15 | 0 | 15 | 0 | 1 | 4 | 0 | 0 |
| lunch | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| spend | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

## Raw bigram probabilities

Normalize by unigrams: $\frac{C \text { (Flout) }}{C(I)}$

Result:

| i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2533 | 927 | 2417 | 746 | 158 | 1093 | 341 | 278 |


|  | i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| i | 0.002 | 0.33 | 0 | 0.0036 | 0 | 0 | 0 | 0.00079 |
| want | 0.0022 | 0 | 0.66 | 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011 |
| to | 0.00083 | 0 | 0.0017 | 0.28 | 0.00083 | 0 | 0.0025 | 0.087 |
| eat | 0 | 0 | 0.0027 | 0 | 0.021 | 0.0027 | 0.056 | 0 |
| chinese | 0.0063 | 0 | 0 | 0 | 0 | 0.52 | 0.0063 | 0 |
| food | 0.014 | 0 | 0.014 | 0 | 0.00092 | 0.0037 | 0 | 0 |
| lunch | 0.0059 | 0 | 0 | 0 | 0 | 0.0029 | 0 | 0 |
| spend | 0.0036 | 0 | 0.0036 | 0 | 0 | 0 | 0 | 0 |

Bigram estimates of sentence probabilities

$$
\begin{aligned}
P(\langle s\rangle \mid \text { want english food }\langle/ s\rangle)= & P(|\mid<s 7) \\
& \times p(\text { wont } \mid I)=0.33 \\
& p(\text { english } \mid \text { wont })= \\
& p(\text { food lenglish })= \\
& p(4 s\rangle(\text { food }) \\
& =0.000031
\end{aligned}
$$

## What kinds of knowledge?

$\mathrm{P}($ english|want) $=.0011$
$\mathrm{P}($ chinese $\mid$ want $)=.0065$
P (to|want) $=.66$
$P($ eat $\mid$ to $)=.28$
$P($ food | to $)=0$
$P($ want | spend $)=0$
$P(i \mid<s>)=.25$

## Practical Issues

When programming, we will handle probabilities in log space to avoid underflow. (This will be true for the rest of the class!)

$$
\log \left(p_{1} \times p_{2} \times p_{3} \times p_{4}\right)=\log p_{1}+\log p_{2}+\log p_{3}+\log p_{4}
$$

## Google N-Gram Release, August 2006

## All Our N-gram are Belong to You


Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R\&D projects,

That's why we decided to share this enormous dataset with everyone. We processed 1,024,908,267,229 words of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40 times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.

## Google N-Gram Release

```
serve as the incoming 92
serve as the incubator 99
serve as the independent }79
serve as the index 223
serve as the indication 72
serve as the indicator }12
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234
```


## Language Modeling

## Smoothing: Add-one (Laplace) smoothing

## The intuition of smoothing (from Dan Klein)

When we have sparse statistics:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{w} \mid \text { denied the }) \\
& 3 \text { allegations } \\
& 2 \text { reports } \\
& 1 \text { claims } \\
& 1 \text { request } \\
& 7 \text { total }
\end{aligned}
$$



Steal probability mass to generalize better


## Add-one estimation

## Also called Laplace smoothing

Pretend we saw each word one more time than we did Just add one to all the counts!

MLE estimate:

$$
P_{M L E}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

Add-1 estimate:

$$
P_{\text {dada }}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)+1}{c\left(w_{i-1}\right)+V}
$$

$$
V=\text { size of vocetulaly }
$$

## Maximum Likelihood Estimates

The maximum likelihood estimate

- of some parameter of a model M from a training set T
- maximizes the likelihood of the training set T given the model M

Suppose the word "bagel" occurs 400 times in a corpus of a million words
What is the probability that a random word from some other text will be "bagel"?
MLE estimate:
This may be a bad estimate for some other corpus

- But it is the estimate that makes it most likely that "bagel" will occur 400 times in a million word corpus.


## Maximum Likelihood Estimates

The maximum likelihood estimate

- of some parameter of a model M from a training set T
- maximizes the likelihood of the training set T given the model M

Suppose the word "bagel" occurs 400 times in a corpus of a million words
What is the probability that a random word from some other text will be "bagel"?
MLE estimate is $400 / 1,000,000=.0004$
This may be a bad estimate for some other corpus

- But it is the estimate that makes it most likely that "bagel" will occur 400 times in a million word corpus.


## Berkeley Restaurant Corpus: Laplace smoothed bigram counts

|  | i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| i | 6 | 828 | 1 | 10 | 1 | 1 | 1 | 3 |
| want | 3 | 1 | 609 | 2 | 7 | 7 | 6 | 2 |
| to | 3 | 1 | 5 | 687 | 3 | 1 | 7 | 212 |
| eat | 1 | 1 | 3 | 1 | 17 | 3 | 43 | 1 |
| chinese | 2 | 1 | 1 | 1 | 1 | 83 | 2 | 1 |
| food | 16 | 1 | 16 | 1 | 2 | 5 | 1 | 1 |
| lunch | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 1 |
| spend | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |

## Laplace-smoothed bigrams

$$
P^{*}\left(w_{n} \mid w_{n-1}\right)=\frac{C\left(w_{n-1} w_{n}\right)+1}{C\left(w_{n-1}\right)+V}
$$

|  | i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| i | 0.0015 | 0.21 | 0.00025 | 0.0025 | 0.00025 | 0.00025 | 0.00025 | 0.00075 |
| want | 0.0013 | 0.00042 | 0.26 | 0.00084 | 0.0029 | 0.0029 | 0.0025 | 0.00084 |
| to | 0.00078 | 0.00026 | 0.0013 | 0.18 | 0.00078 | 0.00026 | 0.0018 | 0.055 |
| eat | 0.00046 | 0.00046 | 0.0014 | 0.00046 | 0.0078 | 0.0014 | 0.02 | 0.00046 |
| chinese | 0.0012 | 0.00062 | 0.00062 | 0.00062 | 0.00062 | 0.052 | 0.0012 | 0.00062 |
| food | 0.0063 | 0.00039 | 0.0063 | 0.00039 | 0.00079 | 0.002 | 0.00039 | 0.00039 |
| lunch | 0.0017 | 0.00056 | 0.00056 | 0.00056 | 0.00056 | 0.0011 | 0.00056 | 0.00056 |
| spend | 0.0012 | 0.00058 | 0.0012 | 0.00058 | 0.00058 | 0.00058 | 0.00058 | 0.00058 |

## Reconstituted counts

$$
c^{*}\left(w_{n-1} w_{n}\right)=\frac{\left[C\left(w_{n-1} w_{n}\right)+1\right] \times C\left(w_{n-1}\right)}{C\left(w_{n-1}\right)+V}
$$

|  | i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| i | 3.8 | 527 | 0.64 | 6.4 | 0.64 | 0.64 | 0.64 | 1.9 |
| want | 1.2 | 0.39 | 238 | 0.78 | 2.7 | 2.7 | 2.3 | 0.78 |
| to | 1.9 | 0.63 | 3.1 | 430 | 1.9 | 0.63 | 4.4 | 133 |
| eat | 0.34 | 0.34 | 1 | 0.34 | 5.8 | 1 | 15 | 0.34 |
| chinese | 0.2 | 0.098 | 0.098 | 0.098 | 0.098 | 8.2 | 0.2 | 0.098 |
| food | 6.9 | 0.43 | 6.9 | 0.43 | 0.86 | 2.2 | 0.43 | 0.43 |
| lunch | 0.57 | 0.19 | 0.19 | 0.19 | 0.19 | 0.38 | 0.19 | 0.19 |
| spend | 0.32 | 0.16 | 0.32 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |

## Compare with raw bigram counts

|  | i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| i | 5 | 827 | 0 | 9 | 0 | 0 | 0 | 2 |
| want | 2 | 0 | 608 | 1 | 6 | 6 | 5 | 1 |
| to | 2 | 0 | 4 | 686 | 2 | 0 | 6 | 211 |
| eat | 0 | 0 | 2 | 0 | 16 | 2 | 42 | 0 |
| chinese | 1 | 0 | 0 | 0 | 0 | 82 | 1 | 0 |
| food | 15 | 0 | 15 | 0 | 1 | 4 | 0 | 0 |
| lunch | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| spend | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |


|  | i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| i | 3.8 | 527 | 0.64 | 6.4 | 0.64 | 0.64 | 0.64 | 1.9 |
| want | 1.2 | 0.39 | 238 | 0.78 | 2.7 | 2.7 | 2.3 | 0.78 |
| to | 1.9 | 0.63 | 3.1 | 430 | 1.9 | 0.63 | 4.4 | 133 |
| eat | 0.34 | 0.34 | 1 | 0.34 | 5.8 | 1 | 15 | 0.34 |
| chinese | 0.2 | 0.098 | 0.098 | 0.098 | 0.098 | 8.2 | 0.2 | 0.098 |
| food | 6.9 | 0.43 | 6.9 | 0.43 | 0.86 | 2.2 | 0.43 | 0.43 |
| lunch | 0.57 | 0.19 | 0.19 | 0.19 | 0.19 | 0.38 | 0.19 | 0.19 |
| spend | 0.32 | 0.16 | 0.32 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |

## Add-1 estimation is a blunt instrument

So add-1 isn't used for N -grams:

- We'll see better methods

But add-1 is used to smooth other NLP models

- For text classification
- In domains where the number of zeros isn't so huge.


## Language Modeling

## Interpolation, Backoff, and Web-Scale LMs

## Backoff and Interpolation

Sometimes it helps to use less context

- Condition on less context for contexts you haven't learned much about


## Backoff:

- use trigram if you have good evidence,
- otherwise bigram, otherwise unigram

Interpolation:

- mix unigram, bigram, trigram

Interpolation works better

## Linear Interpolation

Simple interpolation: estimate the trigram probabilities by mixing unigram, bigram, and trigram probabilities.

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1} P\left(w_{n}\right) \\
& +\lambda_{2} P\left(w_{n} \mid w_{n-1}\right) \quad \sum_{i} \lambda_{i}=1 \\
& +\lambda_{3} P\left(w_{n} \mid w_{n-2} w_{n-1}\right)
\end{aligned} \quad
$$

## Linear Interpolation

Simple interpolation: estimate the trigram probabilities by mixing unigram, bigram, and trigram probabilities.

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1} P\left(w_{n}\right) \\
& +\lambda_{2} P\left(w_{n} \mid w_{n-1}\right) \quad \sum_{i} \lambda_{i}=1 \\
& +\lambda_{3} P\left(w_{n} \mid w_{n-2} w_{n-1}\right)
\end{aligned} \quad
$$

Let's set arbitrary weights: $\lambda_{1}=0.4 \quad \lambda_{2}=0.6$

|  | i | want | to | eat |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 5 | 827 | 0 | 9 | 11200 | 1 |
| want | 2 | 0 | 608 | 1 | , 900 | I |
| to | 2 | 0 | 4 | 686 | 1930 | 1 |
| eat | 0 | 0 | 2 | 0 | 139 | I |

$$
\mathrm{p}(\text { want } \mid \mathrm{i})=
$$

## Linear Interpolation

Simple interpolation: estimate the trigram probabilities by mixing unigram, bigram, and trigram probabilities.

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1} P\left(w_{n}\right) \\
& +\lambda_{2} P\left(w_{n} \mid w_{n-1}\right) \quad \sum_{i} \lambda_{i}=1 \\
& +\lambda_{3} P\left(w_{n} \mid w_{n-2} w_{n-1}\right)
\end{aligned} \quad
$$

Let's set arbitrary weights: $\lambda_{1}=0.4 \quad \lambda_{2}=0.6$

|  | i | want | to | eat |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 5 | 827 | 0 | 9 | 11200 | 1 |
| want | 2 | 0 | 608 | 1 | , 900 | I |
| to | 2 | 0 | 4 | 686 | 1930 | 1 |
| eat | 0 | 0 | 2 | 0 | 139 | I |

$$
\mathrm{p}(\text { want } \mid \text { to })=
$$

## Linear Interpolation

Simple interpolation: estimate the trigram probabilities by mixing unigram, bigram, and trigram probabilities.

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1} P\left(w_{n}\right) \\
& +\lambda_{2} P\left(w_{n} \mid w_{n-1}\right) \quad \sum_{i} \lambda_{i}=1 \\
& +\lambda_{3} P\left(w_{n} \mid w_{n-2} w_{n-1}\right)
\end{aligned} \quad
$$

Lambdas conditional on context:

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \\
& +\lambda_{2}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3}\left(w_{n-2}^{n-1}\right) P\left(w_{n}\right)
\end{aligned}
$$

## How to set the lambdas?

## Use a held-out corpus

## Training Data

 Data

Test
Data

Choose $\lambda$ s to maximize the probability of held-out data:

- Fix the N -gram probabilities (on the training data)
- Then search for $\lambda$ s that give largest probability to held-out set:

$$
\log P\left(w_{1} \ldots w_{n} \mid M\left(\lambda_{1} \ldots \lambda_{k}\right)\right)=\sum_{i} \log P_{M\left(\lambda_{1} \ldots \lambda_{k}\right)}\left(w_{i} \mid w_{i-1}\right)
$$

## Unknown words: Open versus closed vocabulary tasks

If we know all the words in advanced

- Vocabulary V is fixed
- Closed vocabulary task

Often we don't know this

- Out Of Vocabulary = OOV words
- Open vocabulary task

Instead: create an unknown word token <UNK>

- Training of <UNK> probabilities
- Create a fixed lexicon L of size V
- At text normalization phase, any training word not in L changed to <UNK>
- Now we train its probabilities like a normal word
- At decoding time
- If text input: Use UNK probabilities for any word not in training


## Huge web-scale n-grams

How to deal with, e.g., Google N-gram corpus
Pruning

- Only store N-grams with count > threshold.
- Remove singletons of higher-order n-grams
- Entropy-based pruning

Efficiency

- Efficient data structures like tries
- Bloom filters: approximate language models
- Store words as indexes, not strings
- Use Huffman coding to fit large numbers of words into two bytes
- Quantize probabilities (4-8 bits instead of 8-byte float)


## Smoothing for Web-scale N-grams

"Stupid backoff" (Brants et al. 2007)
No discounting, just use relative frequencies

$$
\begin{aligned}
& S\left(w_{i} \mid w_{i-k+1}^{-1}\right)=\left\{\begin{array}{c}
\frac{\operatorname{count}\left(W_{i-k+1}^{j}\right)}{\operatorname{count}\left(W_{i-k+1}^{-1}\right)} \text { if } \operatorname{count}\left(w_{i-k+1}\right)>0 \\
0.4 S\left(w_{i} \mid w_{i-k+2}^{-1}\right) \quad \text { otherwise }
\end{array}\right. \\
& S\left(w_{i}\right)=\frac{\operatorname{count}\left(w_{i}\right)}{N}
\end{aligned}
$$

## N-gram Smoothing Summary

## Add-1 smoothing:

- OK for text categorization, not for language modeling The most commonly used method:
- Extended Interpolated Kneser-Ney (Intuition: instead of asking "How likely is w?", ask "How likely is w to appear as a novel continuation?

For very large N -grams like the Web:

- Stupid backoff

