

Language
Modeling

 Introduction to N-grams

Probabilistic Language Models
 Today’s goal: assign a probability to a sentence

◦ Machine Translation:

◦ P(high winds tonite) > P(large winds tonite)

◦ Spelling Correction

◦ The office is about fifteen minuets from my house

◦ P(about fifteen minutes from) > P(about fifteen minuets from)
◦ Speech Recognition

◦ P(I saw a van) >> P(eyes awe of an)

Why?

Probabilistic Language Modeling

 Goal:
 Compute the probability of a sentence or sequence of words:

 P(W) = P(w1,w2,w3,w4,w5…wn)

 Related task: probability of an upcoming word:
 P(w5|w1,w2,w3,w4)

 A model that computes either of these:
 P(W) or P(wn|w1,w2…wn-1) is called a language model.

How to compute P(W)

 How to compute this joint probability:

◦ P(its, water, is, so, transparent, that)

 Intuition: rely on the Chain Rule of Probability

Reminder: The Chain Rule

 Recall the definition of conditional probabilities
p(B|A) = Rewriting: P(A,B) =

PCA PCBIA
PEX oats a PA PIX IT PIX Ix X2

PITA pirate xn

Reminder: The Chain Rule

 Recall the definition of conditional probabilities
p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

 The Chain Rule in General

The Chain Rule applied to compute joint probability of words in
sentence

P(“its water is so transparent”) =

!!

€

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

w

position1PCWiWzn.Wn Ipfw Wins Win

Ipfw Wiwa Wi s
Wi WI

Plaits Pfewater a its

Pftransparentlitswatrisso plus is w its wawater
splits Plot

programparentinsitsiwiwat we
pray so w its wzwaterweis

How to estimate these probabilities

 Could we just count and divide?

€

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

2s

Maximum Likelihood Estimates

How to estimate these probabilities

 Could we just count and divide?

 No! Too many possible sentences!
 We’ll never see enough data for estimating these

€

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

Markov Assumption

 Simplifying assumption:

€

P(the | its water is so transparent that) ≈ P(the | that)

bigram Zword

f together

PCthe I issoransparent that Pftneltranspara

trigram y that

model Swordunits

Markov Assumption

 Approximate each component in the product:

!!

€

P(w1w2…wn) ≈ P(wi |wi−k…wi−1)
i
∏

Simplest case: Unigram model

fifth, an, of, futures, the, an, incorporated, a,
a, the, inflation, most, dollars, quarter, in, is,
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model
!!

€

P(w1w2…wn) ≈ P(wi)
i
∏

Condition on the previous word:

P(wi | w1 w2 ... wi-1) ≈ P(wi | wi-1)

Bigram model

texaco, rose, one, in, this, issue, is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

N-gram models

 We can extend to trigrams, 4-grams, 5-grams
 In general this is an insufficient model of language

◦ because language has long-distance dependencies:

“The computer which I had just put into the machine room
on the fifth floor crashed.”

 But we can often get away with N-gram models

Language
Modeling

 Estimating N-gram
Probabilities

How do we get probabilities?
P(wi | w1 w2 ... wi-1) ≈ P(wi | wi-1)

From observing frequencies
in a trainingcorpus

Estimating bigram probabilities
 The Maximum Likelihood Estimate

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

An example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PCI as CIII 23 pram I 3

prsam is y prdolI V3

More examples:
Berkeley Restaurant Project sentences

 can you tell me about any good cantonese restaurants close by
 mid priced thai food is what i’m looking for
 tell me about chez panisse
 can you give me a listing of the kinds of food that are available
 i’m looking for a good place to eat breakfast
 when is caffe venezia open during the day

Raw bigram counts
 Out of 9222 sentences

Wz

E

Raw bigram probabilities
 Normalize by unigrams:

 Result:

prant II KEITH

00 o o

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) = PC11257
plwant I 0.33
prenglishlwant

p foodlenglists
p 4s food
0.000031

What kinds of knowledge?

 P(english|want) = .0011
 P(chinese|want) = .0065
 P(to|want) = .66
 P(eat | to) = .28
 P(food | to) = 0
 P(want | spend) = 0
 P (i | <s>) = .25

Practical Issues

 When programming, we will handle
probabilities in log space to avoid underflow.
(This will be true for the rest of the class!)

log(p1 × p2 × p3 × p4) = log p1 + log p2 + log p3 + log p4

Google N-Gram Release, August 2006

…

Google N-Gram Release
 serve as the incoming 92
 serve as the incubator 99
 serve as the independent 794
 serve as the index 223
 serve as the indication 72
 serve as the indicator 120
 serve as the indicators 45
 serve as the indispensable 111
 serve as the indispensible 40
 serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Language
Modeling

 Smoothing: Add-one
(Laplace) smoothing

The intuition of smoothing (from Dan Klein)

 When we have sparse statistics:

 Steal probability mass to generalize better

P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request
 7 total

al
le
ga
ti
on
s

re
p
or
ts

cl
ai
m
s

at
ta

ck

re
q
ue
st

m
an

ou
tc

om
e

…

al
le
ga
ti
on
s

at
ta

ck

m
an

ou
tc

om
e

…al
le
ga
ti
on
s

re
p
or
ts

cl
ai
m
s

re
q
ue
st

Add-one estimation
 Also called Laplace smoothing
 Pretend we saw each word one more time than we did
 Just add one to all the counts!

 MLE estimate:

 Add-1 estimate:

PMLE(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

Panelwit wit ftp.fi
size of vocabulary

Maximum Likelihood Estimates

 The maximum likelihood estimate
◦ of some parameter of a model M from a training set T
◦ maximizes the likelihood of the training set T given the model M

 Suppose the word “bagel” occurs 400 times in a corpus of a million words
 What is the probability that a random word from some other text will be “bagel”?
 MLE estimate:

 This may be a bad estimate for some other corpus
◦ But it is the estimate that makes it most likely that “bagel” will occur 400 times in a

million word corpus.

Maximum Likelihood Estimates

 The maximum likelihood estimate
◦ of some parameter of a model M from a training set T
◦ maximizes the likelihood of the training set T given the model M

 Suppose the word “bagel” occurs 400 times in a corpus of a million words
 What is the probability that a random word from some other text will be “bagel”?
 MLE estimate is 400/1,000,000 = .0004

 This may be a bad estimate for some other corpus
◦ But it is the estimate that makes it most likely that “bagel” will occur 400 times in a

million word corpus.

Berkeley Restaurant Corpus: Laplace smoothed bigram counts

Laplace-smoothed bigrams

Reconstituted counts

Compare with raw bigram counts

Add-1 estimation is a blunt instrument

 So add-1 isn’t used for N-grams:
◦ We’ll see better methods

 But add-1 is used to smooth other NLP models
◦ For text classification
◦ In domains where the number of zeros isn’t so huge.

Language
Modeling

 Interpolation, Backoff, and
Web-Scale LMs

Backoff and Interpolation

 Sometimes it helps to use less context
◦ Condition on less context for contexts you haven’t learned much about

 Backoff:
◦ use trigram if you have good evidence,
◦ otherwise bigram, otherwise unigram

 Interpolation:
◦ mix unigram, bigram, trigram

 Interpolation works better

Linear Interpolation
 Simple interpolation: estimate the trigram probabilities by
mixing unigram, bigram, and trigram probabilities.

Linear Interpolation
 Simple interpolation: estimate the trigram probabilities by
mixing unigram, bigram, and trigram probabilities.

 Let's set arbitrary weights: = 0.4 = 0.6
p(want|i) =i want to eat

i 5 827 0 9 1200
want 2 0 608 1 900
to 2 0 4 686 930
eat 0 0 2 0 39

1200 900 930 39

Linear Interpolation
 Simple interpolation: estimate the trigram probabilities by
mixing unigram, bigram, and trigram probabilities.

 Let's set arbitrary weights: = 0.4 = 0.6
p(want|to) =i want to eat

i 5 827 0 9 1200
want 2 0 608 1 900
to 2 0 4 686 930
eat 0 0 2 0 39

1200 900 930 39

Linear Interpolation
 Simple interpolation: estimate the trigram probabilities by
mixing unigram, bigram, and trigram probabilities.

 Lambdas conditional on context:

How to set the lambdas?

 Use a held-out corpus

 Choose λs to maximize the probability of held-out data:
◦ Fix the N-gram probabilities (on the training data)
◦ Then search for λs that give largest probability to held-out set:

Training Data Held-Out
Data

Test
Data

logP(w1...wn |M (λ1...λk)) = logPM (λ1...λk) (wi |wi−1)
i
∑

Unknown words: Open versus closed vocabulary tasks
 If we know all the words in advanced

◦ Vocabulary V is fixed
◦ Closed vocabulary task

 Often we don’t know this
◦ Out Of Vocabulary = OOV words
◦ Open vocabulary task

 Instead: create an unknown word token <UNK>
◦ Training of <UNK> probabilities

◦ Create a fixed lexicon L of size V
◦ At text normalization phase, any training word not in L changed to <UNK>
◦ Now we train its probabilities like a normal word

◦ At decoding time
◦ If text input: Use UNK probabilities for any word not in training

Huge web-scale n-grams

 How to deal with, e.g., Google N-gram corpus
 Pruning

◦ Only store N-grams with count > threshold.
◦ Remove singletons of higher-order n-grams

◦ Entropy-based pruning
 Efficiency

◦ Efficient data structures like tries
◦ Bloom filters: approximate language models
◦ Store words as indexes, not strings

◦ Use Huffman coding to fit large numbers of words into two bytes
◦ Quantize probabilities (4-8 bits instead of 8-byte float)

Smoothing for Web-scale N-grams
 “Stupid backoff” (Brants et al. 2007)
 No discounting, just use relative frequencies

80

S(wi |wi−k+1
i−1) =

count(wi−k+1
i)

count(wi−k+1
i−1)

 if count(wi−k+1
i) > 0

0.4S(wi |wi−k+2
i−1) otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

S(wi) =
count(wi)

N

N-gram Smoothing Summary

 Add-1 smoothing:
◦ OK for text categorization, not for language modeling

 The most commonly used method:
◦ Extended Interpolated Kneser-Ney (Intuition: instead of

asking “How likely is w?”, ask “How likely is w to appear
as a novel continuation?

 For very large N-grams like the Web:
◦ Stupid backoff

81

