
Text
Classification
and Naive
Bayes

The Naive Bayes Classifier

Multinomial Naive Bayes Classifier

cMAP = argmax
c∈C

P(x1, x2,…, xn | c)P(c)

cNB = argmax
c∈C

P(cj) P(x | c)
x∈X
∏

prior likelihood

Multinomial Naive Bayes:
 Independence Assumptions

Bag of Words assumption: Assume position doesn’t matter
Conditional Independence: Assume the feature
probabilities P(xi|cj) are independent given the class c.

P(x1, x2,…, xn | c)

P(x1,…, xn | c) = P(x1 | c)•P(x2 | c)•P(x3 | c)•...•P(xn | c)

Summary: Naive Bayes is Not So Naive
Very Fast, low storage requirements
Work well with very small amounts of training data
Robust to Irrelevant Features

 Irrelevant Features cancel each other without affecting results
Very good in domains with many equally important features

 Decision Trees suffer from fragmentation in such cases – especially if little data
Optimal if the independence assumptions hold: If assumed

independence is correct, then it is the Bayes Optimal Classifier for problem
A good dependable baseline for text classification

◦ But we will see other classifiers that give better accuracy
Slide from Chris Manning

Text
Classification
and Naïve
Bayes

 Precision, Recall, and F-measure

Evaluation

Consider a binary text classification task:
Is this passage from a book a "smell experience" or not?

Evaluation
Consider a binary text classification task:
Is this passage from a book a "smell experience" or not?
You build a "smell" detector

◦ Positive class: paragraph that involves a smell experience
◦ Negative class: all other paragraphs

The 2-by-2 confusion matrix
Truth

Prediction

gold standard

gold positive goldnegative

Output

Precision

system true positive false positive
Fptp

false negative truenegative

Recall ITEN

The 2-by-2 confusion matrix

Evaluation: Accuracy

Why don't we use accuracy as our metric?
Imagine we saw 1 million paragraphs

◦ 100 of them mention smells
◦ 999,900 talk about something else

We could build a classifier that labels every paragraph
"not about smell"

Evaluation: Accuracy

Why don't we use accuracy as our metric?
Imagine we saw 1 million paragraphs

◦ 100 of them mention smells
◦ 999,900 talk about something else

We could build a classifier that labels every paragraph
"not about smell"

◦ It would get 99.99% accuracy!!!
◦ But the whole point of the classifier is to help literary scholars

find passages about smell to study--- so this is useless!
◦ That's why we use precision and recall instead

Evaluation: Precision

% of items the system detected (i.e., items the
system labeled as positive) that are in fact positive
(according to the human gold labels)

PRECISION =
TruePositives
True positives FalsePositives

Evaluation: Precision

% of items the system detected (i.e., items the
system labeled as positive) that are in fact positive
(according to the human gold labels)

Evaluation: Recall

% of items actually present in the input that were
correctly identified by the system.

RECALL = Thepositres
True positives t FalseNegatives

Evaluation: Recall

% of items actually present in the input that were
correctly identified by the system.

Why Precision and recall

Our no-smells classifier
◦ Labels nothing as "about smell"

Accuracy =

Recall =

Precision =

99.99

0to

g
Nigg
ByZeroError

Why Precision and recall

Our no-smells classifier
◦ Labels nothing as "about smell"

Accuracy=99.99%
Precision = undefined (division by 0!)

Recall = 0
◦ (it doesn't get any of the 100 Pie tweets)

Precision and recall, unlike accuracy, emphasize true
positives:

◦ finding the things that we are supposed to be looking for.

A combined measure: F

F measure: a single number that combines P and R:

F ftp.tpPR Typically 7 1 even balance

Fa ftp
FP 100

Tp too
Precision ypIp 2

Real It

A combined measure: F

F measure: a single number that combines P and R:

We almost always use balanced F1 (i.e., β = 1)

A combined measure: F

F measure: a single number that combines P and R:

We almost always use balanced F1 (i.e., β = 1)

Text
Classification
and Naive
Bayes

Evaluation with more than
two classes

Confusion Matrix for 3-class classification
truepositives FN normal FNlurgent

FNCspam

O o

OO

How to combine P/R from 3 classes to get one metric

Macroaveraging:

Microaveraging:

Compute performance for eachclass

Average over classes

Collect desisions for all classes into
oneconfusion

matrix

Compte precision recall from that table

How to combine P/R from 3 classes to get one metric

Macroaveraging:
◦ compute the performance for each class, and then

average over classes
Microaveraging:

◦ collect decisions for all classes into one confusion matrix
◦ compute precision and recall from that table.

Macroaveraging and Microaveraging

Macroaveraging and Microaveraging

Text
Classification
and Naive
Bayes

Statistical Significance
Testing

How can we be sure that our results generalize?

Usually:
We care about how our system performs on data that is
similar to the training data- not identical.

Development Test Sets and Cross-validation

Train on training set, tune on devset, report on testset
◦ This avoids overfitting (‘training on test’)
◦ More conservative estimate of performance
◦ But paradox: want as much data as possible for training, and as

much for dev; how to split?

Training set Development Test Set Test Set

Cross-validation: multiple splits
Pool results over splits, Compute pooled dev performance

How do we know if one classifier is better than another?
Given:

◦ Classifier A and B
◦ Metric M: M(A,x) is the performance of A on testset x
◦ !(x): the performance difference between A, B on x:

◦ !(x) = M(A,x) – M(B,x)
◦ We want to know if !(x)>0, meaning A is better than B

How do we know if one classifier is better than another?
Given:

◦ Classifier A and B
◦ Metric M: M(A,x) is the performance of A on testset x
◦ !(x): the performance difference between A, B on x:

◦ !(x) = M(A,x) – M(B,x)

◦ We want to know if !(x)>0, meaning A is better than B
◦ !(x) is called the effect size
◦ Suppose we look and see that !(x) is positive. Are we done?

Statistical Hypothesis Testing
Consider two hypotheses:

◦ Null hypothesis: A isn't better than B
◦ A is better than B

We want to rule out H0

NollHypothesis

Statistical Hypothesis Testing
Consider two hypotheses:

◦ Null hypothesis: A isn't better than B
◦ A is better than B

We want to rule out H0

We create a random variable X ranging over test sets
and ask, among all these test sets, how likely are we to
see !(x) if H0 is true?

Statistical Hypothesis Testing
Consider two hypotheses:

◦ Null hypothesis: A isn't better than B
◦ A is better than B

We want to rule out H0

We create a random variable X ranging over test sets
and ask, among all these test sets, how likely are we to
see !(x) if H0 is true?
• Formalized as the p-value:

Statistical Hypothesis Testing

◦ In our example, this p-value is the probability that we would see
δ(x) assuming H0 (=A is not better than B).

◦ If H0 is true but δ(x) is huge, that is surprising! Very low probability!
◦ A small p-value means that the difference we observed is

unlikely under the null hypothesis. We fail to find support for
the null hypothesis.

Statistical Hypothesis Testing

◦ In our example, this p-value is the probability that we would see
δ(x) assuming H0 (=A is not better than B).

◦ If H0 is true but δ(x) is huge, that is surprising! Very low probability!
◦ A small p-value means that the difference we observed is

unlikely under the null hypothesis. We fail to find support for
the null hypothesis.

◦ Conventionally, very small means p < 0.05 or 0.01

Statistical Hypothesis Testing

◦ In our example, this p-value is the probability that we would see
δ(x) assuming H0 (=A is not better than B).

◦ If H0 is true but δ(x) is huge, that is surprising! Very low probability!
◦ A small p-value means that the difference we observed is

unlikely under the null hypothesis. We fail to find support for
the null hypothesis.

◦ Conventionally, very small means p < 0.05 or 0.01
◦ A result(e.g., “A is better than B”) is statistically significant if

the δ we saw has a probability that is below the threshold and
we therefore reject this null hypothesis.

Statistical Hypothesis Testing
◦ How do we compute this probability?
◦ In NLP, we don't tend to use parametric tests (like t-tests)
◦ Instead, we use non-parametric tests based on sampling:

artificially creating many versions of the setup.
◦ For example, suppose we had created zillions of testsets x'.

Statistical Hypothesis Testing
◦ How do we compute this probability?
◦ In NLP, we don't tend to use parametric tests (like t-tests)
◦ Instead, we use non-parametric tests based on sampling:

artificially creating many versions of the setup.
◦ For example, suppose we had created zillions of testsets x'.

◦ Now we measure the value of !(x') on each test set
◦ That gives us a distribution
◦ Now set a threshold (say .01).
◦ So if we see that in 99% of the test sets !(x) > !(x')

◦ We conclude that our original test set delta was a real delta and not an artifact.

Statistical Hypothesis Testing

Two common approaches:
◦ approximate randomization
◦ bootstrap test

Paired tests:
◦ Comparing two sets of observations in which each observation

in one set can be paired with an observation in another.
◦ For example, when looking at systems A and B on the same

test set, we can compare the performance of system A and B
on each same observation xi

Text
Classification
and Naive
Bayes

The Paired Bootstrap Test

Bootstrap test

Can apply to any metric (accuracy, precision, recall, F1).
Bootstrap means to repeatedly draw large numbers of
smaller samples with replacement (called bootstrap
samples) from an original larger sample.

Efron and Tibshirani, 1993

Bootstrap example

Consider a baby text classification example with a test
set x of 10 documents, using accuracy as metric.
Here are the results of systems A and B on x.
There are 4 outcomes (A & B both right, A & B both
wrong, A right/B wrong, A wrong/B right):

AB AB AB AB AB AB AB AB AB AB
1 2 3 4 5 6 7 8 9 10 A% B% d()

0.7 0.5 0.2

Bootstrap example
Now we create, many, say, b=10,000 virtual test sets x(i),
each of size n = 10.
To make each x(i), we randomly select a cell from row x,
with replacement, 10 times:

AB AB AB AB AB AB AB AB AB AB
1 2 3 4 5 6 7 8 9 10 A% B% d()

0.7 0.5 0.2

AB AB AB AB AB AB AB AB AB AB 0.6
0.6

-0.1
AB AB AB AB AB AB AB AB AB AB 0.0

0.7
0.6

Bootstrap example
We have a distribution! We check how often A has an
accidental advantage, to see if the original !(x) we saw
was very common. If H0 is true, we expect !(x')=0.

Bootstrap example
We have a distribution! We check how often A has an
accidental advantage, to see if the original !(x) we saw
was very common. If H0 is true, we expect !(x')=0.

So we just count how many times the !(x') we found
exceeds the expected 0 value by !(x) or more:

Bootstrap example
Alas, it's slightly more complicated.
We didn’t draw these samples from a distribution with 0 mean; we
created them from the original test set x. What's the issue?

Bootstrap example
Alas, it's slightly more complicated.
We didn’t draw these samples from a distribution with 0 mean; we
created them from the original test set x, which is biased (by .20) in favor
of A.
To measure how surprising our observed δ(x) is, we compute the p-value
by counting how often δ(x') exceeds the expected value of δ(x) by δ(x) or
more:

Bootstrap example
Alas, it's slightly more complicated.
We didn’t draw these samples from a distribution with 0 mean; we
created them from the original test set x, which is biased (by .20) in favor
of A.
To measure how surprising our observed δ(x) is, we compute the p-value
by counting how often δ(x') exceeds the expected value of δ(x) by δ(x) or
more:

Bootstrap example
Suppose:

◦ We have 10,000 test sets x(i) and a threshold of .01
◦ In 47 of the test sets we find that δ(x(i)) ≥ 2δ(x)

Bootstrap example
Suppose:

◦ We have 10,000 test sets x(i) and a threshold of .01
◦ In 47 of the test sets we find that δ(x(i)) ≥ 2δ(x)
◦ The resulting p-value is .0047

Bootstrap example
Suppose:

◦ We have 10,000 test sets x(i) and a threshold of .01
◦ In 47 of the test sets we find that δ(x(i)) ≥ 2δ(x)
◦ The resulting p-value is .0047
◦ This is smaller than .01, indicating δ (x) is indeed

sufficiently surprising

Bootstrap example
Suppose:

◦ We have 10,000 test sets x(i) and a threshold of .01
◦ In 47 of the test sets we find that δ(x(i)) ≥ 2δ(x)
◦ The resulting p-value is .0047
◦ This is smaller than .01, indicating δ (x) is indeed

sufficiently surprising
◦ We reject the null hypothesis and conclude A is better

than B.

Text
Classification
and Naive
Bayes

Avoiding Harms in
Classification

Harms in sentiment classifiers

Kiritchenko and Mohammad (2018) found that most
sentiment classifiers assign lower sentiment and
more negative emotion to sentences with African
American names in them.
This perpetuates negative stereotypes that
associate African Americans with negative emotions

Harms in toxicity classification

Toxicity detection is the task of detecting hate speech,
abuse, harassment, or other kinds of toxic language
But some toxicity classifiers incorrectly flag as being toxic
sentences that are non-toxic but simply mention identities
like blind people, women, or gay people.
This could lead to censorship of discussion about these
groups.

What causes these harms?
Can be caused by:

◦ Problems in the training data; machine learning systems
are known to amplify the biases in their training data.

◦ Problems in the human labels
◦ Problems in the resources used (like lexicons)
◦ Problems in model architecture (like what the model is

trained to optimized)
Mitigation of these harms is an open research area

